Ramón Serrano Montesinos, J. J. Ferrando, J. A. Morales-Lladosa
{"title":"Location Problem in Relativistic Positioning: Relative Formulation","authors":"Ramón Serrano Montesinos, J. J. Ferrando, J. A. Morales-Lladosa","doi":"10.3390/universe10070299","DOIUrl":null,"url":null,"abstract":"A relativistic positioning system is a set of four emitters broadcasting their proper times by means of light signals. The four emitter times received at an event constitute the emission coordinates of the event. The covariant quantities associated with relativistic positioning systems are analysed relative to an observer in Minkowski space-time by splitting them in their relative space-like and time-like components. The location of a user in inertial coordinates from a standard set of emission data (emitted times and satellite trajectories) is solved in the underlying 3+1 formalism. The analytical location solution obtained by Kleusberg for the GPS system is recovered and interpreted in a Minkowskian context.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 11","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/universe10070299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
A relativistic positioning system is a set of four emitters broadcasting their proper times by means of light signals. The four emitter times received at an event constitute the emission coordinates of the event. The covariant quantities associated with relativistic positioning systems are analysed relative to an observer in Minkowski space-time by splitting them in their relative space-like and time-like components. The location of a user in inertial coordinates from a standard set of emission data (emitted times and satellite trajectories) is solved in the underlying 3+1 formalism. The analytical location solution obtained by Kleusberg for the GPS system is recovered and interpreted in a Minkowskian context.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.