{"title":"PRODIGY+: a robust progressive upgrade approach for elastic optical networks","authors":"Shrinivas Petale;Aleksandra Knapinska;Egemen Erbayat;Piotr Lechowicz;Krzysztof Walkowiak;Shih-Chun Lin;Motoharu Matsuura;Hiroshi Hasegawa;Suresh Subramaniam","doi":"10.1364/JOCN.525392","DOIUrl":null,"url":null,"abstract":"Elastic optical networks (EONs) operating in the C-band have been widely deployed worldwide. However, two major technologies—multiband elastic optical networks (MB-EONs) and space division multiplexed elastic optical networks (SDM-EONs)—can significantly increase network capacity beyond traditional EONs. A one-time greenfield deployment of these flexible-grid technologies may not be practical, as existing investments in flexible-grid EONs need to be preserved and ongoing services must face minimal disruption. Therefore, we envision the coexistence of flexible-grid, multiband, and multicore technologies during the brownfield migration. Each technology represents a tradeoff between higher capacity and greater deployment overhead, directly impacting network performance. Moreover, as traffic demands continue rising, capacity exhaustion becomes inevitable. Considering the different characteristics of these technologies, we propose a robust network planning solution called Progressive Optics Deployment and Integration for Growing Yields (PRODIGY+) to gradually migrate current C-band EONs. PRODIGY+ employs proactive measures inspired by the Swiss Cheese Model, making the network robust to traffic peaks while meeting service level agreements. The upgrade strategy enables a gradual transition to minimize migration costs while continuously supporting increasing traffic demands. We provide a detailed comparison of our proposed PRODIGY+ strategy against baseline strategies, demonstrating its superior performance.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 9","pages":"E48-E60"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638334/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Elastic optical networks (EONs) operating in the C-band have been widely deployed worldwide. However, two major technologies—multiband elastic optical networks (MB-EONs) and space division multiplexed elastic optical networks (SDM-EONs)—can significantly increase network capacity beyond traditional EONs. A one-time greenfield deployment of these flexible-grid technologies may not be practical, as existing investments in flexible-grid EONs need to be preserved and ongoing services must face minimal disruption. Therefore, we envision the coexistence of flexible-grid, multiband, and multicore technologies during the brownfield migration. Each technology represents a tradeoff between higher capacity and greater deployment overhead, directly impacting network performance. Moreover, as traffic demands continue rising, capacity exhaustion becomes inevitable. Considering the different characteristics of these technologies, we propose a robust network planning solution called Progressive Optics Deployment and Integration for Growing Yields (PRODIGY+) to gradually migrate current C-band EONs. PRODIGY+ employs proactive measures inspired by the Swiss Cheese Model, making the network robust to traffic peaks while meeting service level agreements. The upgrade strategy enables a gradual transition to minimize migration costs while continuously supporting increasing traffic demands. We provide a detailed comparison of our proposed PRODIGY+ strategy against baseline strategies, demonstrating its superior performance.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.