{"title":"Is plate tectonics a post-Archean phenomenon? A petrological perspective","authors":"Michael Brown, Julian A. Pearce, Tim E. Johnson","doi":"10.1144/jgs2024-091","DOIUrl":null,"url":null,"abstract":"\n The petrogenesis of contemporary igneous and metamorphic rocks is commonly explained by plate tectonics, but how far back in time does this relationship hold? Here we investigate whether the distinctive petrological features of recent ocean crust, subduction-related magmatism and regional metamorphism can be unambiguously identified in the Archean geological record. From an igneous perspective based on geological relationships and Th\n –\n Nb systematics, it is difficult to claim that any Archean ‘ophiolite’ was part of a global plate system rather than deriving from a plume ascending through attenuating lithosphere. Furthermore, the rarity of subduction-related rocks, particularly their plutonic equivalents which have good preservation potential, is consistent with the concept of local convergence and short-lived subduction. From a metamorphic perspective, the appearance of orogenic eclogites in the Paleoproterozoic, the widespread occurrence of blueschists and ultrahigh pressure metamorphic rocks since the late Neoproterozoic, and a change from a unimodal to a bimodal distribution of metamorphic\n T/P\n during the Proterozoic, are responses to secular cooling and the evolution of tectonics since the Archean. Our petrological perspective is that plate tectonics analogous to that on Earth today is probably a post Archean phenomenon.\n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 14","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/jgs2024-091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The petrogenesis of contemporary igneous and metamorphic rocks is commonly explained by plate tectonics, but how far back in time does this relationship hold? Here we investigate whether the distinctive petrological features of recent ocean crust, subduction-related magmatism and regional metamorphism can be unambiguously identified in the Archean geological record. From an igneous perspective based on geological relationships and Th
–
Nb systematics, it is difficult to claim that any Archean ‘ophiolite’ was part of a global plate system rather than deriving from a plume ascending through attenuating lithosphere. Furthermore, the rarity of subduction-related rocks, particularly their plutonic equivalents which have good preservation potential, is consistent with the concept of local convergence and short-lived subduction. From a metamorphic perspective, the appearance of orogenic eclogites in the Paleoproterozoic, the widespread occurrence of blueschists and ultrahigh pressure metamorphic rocks since the late Neoproterozoic, and a change from a unimodal to a bimodal distribution of metamorphic
T/P
during the Proterozoic, are responses to secular cooling and the evolution of tectonics since the Archean. Our petrological perspective is that plate tectonics analogous to that on Earth today is probably a post Archean phenomenon.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.