A categorical Torelli theorem for hypersurfaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Dmitrii Pirozhkov
{"title":"A categorical Torelli theorem for hypersurfaces","authors":"Dmitrii Pirozhkov","doi":"10.1112/blms.13117","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>⊂</mo>\n <msup>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$X \\subset \\mathbb {P}^{n+1}$</annotation>\n </semantics></math> be a smooth Fano hypersurface of dimension <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> and degree <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>. The derived category of coherent sheaves on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> contains an interesting subcategory called the Kuznetsov component <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mi>X</mi>\n </msub>\n <annotation>$\\mathcal {A}_X$</annotation>\n </semantics></math>. We show that this subcategory, together with a certain autoequivalence called the rotation functor, determines <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> uniquely if <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>&gt;</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d &amp;gt; 3$</annotation>\n </semantics></math> or if <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d = 3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>&gt;</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n &amp;gt; 3$</annotation>\n </semantics></math>. This generalizes a result by Huybrechts and Rennemo, who proved the same statement under the additional assumption that <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> divides <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n+2$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3075-3089"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13117","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X P n + 1 $X \subset \mathbb {P}^{n+1}$ be a smooth Fano hypersurface of dimension n $n$ and degree  d $d$ . The derived category of coherent sheaves on  X $X$ contains an interesting subcategory called the Kuznetsov component  A X $\mathcal {A}_X$ . We show that this subcategory, together with a certain autoequivalence called the rotation functor, determines X $X$ uniquely if  d > 3 $d &gt; 3$ or if  d = 3 $d = 3$ and  n > 3 $n &gt; 3$ . This generalizes a result by Huybrechts and Rennemo, who proved the same statement under the additional assumption that d $d$ divides n + 2 $n+2$ .

超曲面的托雷利分类定理
让 是一个维度和阶的光滑法诺超曲面 .上相干剪切的派生类包含一个有趣的子类,叫做库兹涅佐夫分量 。我们的研究表明,这个子类与被称为旋转函子的自等价性一起,唯一地决定了 如果 或 如果 和 .这概括了 Huybrechts 和 Rennemo 的一个结果,他们在额外的假设下证明了同样的说法,即划分 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信