A Low-Computational Burden Closed-Form Approximated Expression for MSE Applicable for PTP with gfGn Environment

Yehonatan Avraham, M. Pinchas
{"title":"A Low-Computational Burden Closed-Form Approximated Expression for MSE Applicable for PTP with gfGn Environment","authors":"Yehonatan Avraham, M. Pinchas","doi":"10.3390/fractalfract8070418","DOIUrl":null,"url":null,"abstract":"The Precision Time Protocol (PTP) plays a pivotal role in achieving precise frequency and time synchronization in computer networks. However, network delays and jitter in real systems introduce uncertainties that can compromise synchronization accuracy. Three clock skew estimators designed for the PTP scenario were obtained in our earlier work, complemented by closed-form approximations for the Mean Squared Error (MSE) under the generalized fractional Gaussian noise (gfGn) model, incorporating the Hurst exponent parameter (H) and the a parameter. These expressions offer crucial insights for network designers, aiding in the strategic selection and implementation of clock skew estimators. However, substantial computational resources are required to fit each expression to the gfGn model parameters (H and a) from the MSE perspective requirement. This paper introduces new closed-form estimates that approximate the MSE tailored to match gfGn scenarios that have a lower computational burden compared to the literature-known expressions and that are easily adaptable from the computational burden point of view to different pairs of H and a parameters. Thus, the system requires less substantial computational resources and might be more cost-effective.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8070418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Precision Time Protocol (PTP) plays a pivotal role in achieving precise frequency and time synchronization in computer networks. However, network delays and jitter in real systems introduce uncertainties that can compromise synchronization accuracy. Three clock skew estimators designed for the PTP scenario were obtained in our earlier work, complemented by closed-form approximations for the Mean Squared Error (MSE) under the generalized fractional Gaussian noise (gfGn) model, incorporating the Hurst exponent parameter (H) and the a parameter. These expressions offer crucial insights for network designers, aiding in the strategic selection and implementation of clock skew estimators. However, substantial computational resources are required to fit each expression to the gfGn model parameters (H and a) from the MSE perspective requirement. This paper introduces new closed-form estimates that approximate the MSE tailored to match gfGn scenarios that have a lower computational burden compared to the literature-known expressions and that are easily adaptable from the computational burden point of view to different pairs of H and a parameters. Thus, the system requires less substantial computational resources and might be more cost-effective.
适用于 gfGn 环境 PTP 的低计算负担 MSE 闭式近似表达式
精确时间协议(PTP)在计算机网络中实现精确频率和时间同步方面发挥着举足轻重的作用。然而,实际系统中的网络延迟和抖动会带来不确定性,从而影响同步精度。我们在早期的工作中获得了三个针对 PTP 情景设计的时钟偏斜估计器,并在广义分数高斯噪声(gfGn)模型下,结合赫斯特指数参数(H)和 a 参数,对平均平方误差(MSE)进行了闭式近似。这些表达式为网络设计人员提供了重要的见解,有助于战略性地选择和实施时钟偏斜估计器。然而,从 MSE 角度要求来看,将每个表达式拟合到 gfGn 模型参数(H 和 a)需要大量计算资源。本文介绍了近似 MSE 的新闭式估计值,这些估计值是为匹配 gfGn 场景而量身定制的,与文献中已知的表达式相比,其计算负担更低,而且从计算负担的角度来看,很容易适应不同的 H 和 a 参数对。因此,该系统所需的大量计算资源较少,可能更具成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信