Ibrahim Tinni Tahiru, Peter M. Burgess, Christopher Stevenson
{"title":"Deep-Water Fan Hierarchy: Assumptions, Evidence, and Numerical Modelling Analysis","authors":"Ibrahim Tinni Tahiru, Peter M. Burgess, Christopher Stevenson","doi":"10.2110/jsr.2023.130","DOIUrl":null,"url":null,"abstract":"Submarine fan strata are commonly described and interpreted assuming a nested, hierarchical organisation of elements, from beds to lobe elements, lobes and lobe complexes. However, describing outcrop and subsurface strata following a particular conceptual method or model is rarely evidence that the model or method accurately reflects the true nature of the strata. To develop more robust understanding of hierarchy in submarine fan strata we developed two metrics, a clustering strength metric that measures how much clustering is present in the spatial distribution of beds, and a hierarchy step metric that indicates how many clustered hierarchical elements are present in the bed spatial distribution. Both metrics are applied to two quantitative fan models. The first model is a very simple geometric model with 10 realisations ranging from a perfectly clustered hierarchy to an indistinguishable-from-random arrangement of beds. The second model, Lobyte3D, is a reduced-complexity process model which uses a st eepest descent flow routing algorithm, combined with a simple but physically reasonable representation of flow velocity, erosion, transport and deposition thresholds, to generate detailed 3D representations of submarine fan strata. Application of the cluster strength and hierarchy step metric to the simpler model demonstrates how the metrics usefully characterise how much order and hierarchy is present in the fan strata. Application to four Lobyte3D models with increasingly complex basin-floor topography shows no evidence for true hierarchy, despite clear self-organisation of the model strata into lobes, suggesting that either Lobyte3D is missing key currently unidentified processes responsible for producing hierarchy, or that interpretations of hierarchy in submarine fan strata are not realistic.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/jsr.2023.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Submarine fan strata are commonly described and interpreted assuming a nested, hierarchical organisation of elements, from beds to lobe elements, lobes and lobe complexes. However, describing outcrop and subsurface strata following a particular conceptual method or model is rarely evidence that the model or method accurately reflects the true nature of the strata. To develop more robust understanding of hierarchy in submarine fan strata we developed two metrics, a clustering strength metric that measures how much clustering is present in the spatial distribution of beds, and a hierarchy step metric that indicates how many clustered hierarchical elements are present in the bed spatial distribution. Both metrics are applied to two quantitative fan models. The first model is a very simple geometric model with 10 realisations ranging from a perfectly clustered hierarchy to an indistinguishable-from-random arrangement of beds. The second model, Lobyte3D, is a reduced-complexity process model which uses a st eepest descent flow routing algorithm, combined with a simple but physically reasonable representation of flow velocity, erosion, transport and deposition thresholds, to generate detailed 3D representations of submarine fan strata. Application of the cluster strength and hierarchy step metric to the simpler model demonstrates how the metrics usefully characterise how much order and hierarchy is present in the fan strata. Application to four Lobyte3D models with increasingly complex basin-floor topography shows no evidence for true hierarchy, despite clear self-organisation of the model strata into lobes, suggesting that either Lobyte3D is missing key currently unidentified processes responsible for producing hierarchy, or that interpretations of hierarchy in submarine fan strata are not realistic.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.