{"title":"Enhancing Multimodal Tourism Review Sentiment Analysis Through Advanced Feature Association Techniques","authors":"Peng Chen, Lingmei Fu","doi":"10.4018/ijisss.349564","DOIUrl":null,"url":null,"abstract":"The development of tourism services presents significant opportunities for extracting and analyzing customer sentiment. However, with the advent of multimodality, travel reviews have brought new challenges. Early methods for detecting such reviews merely combined text and image features, resulting in poor feature correlation. To address this issue, our study proposes a novel multimodal tourism review sentiment analysis method enhanced by relevant features. Initially, we employ a fusion model that combines BERT and Text-CNN for text feature extraction. This approach strengthens semantic relationships and filters noise effectively. Subsequently, we utilize ResNet-51 for image feature extraction, leveraging its ability to learn complex visual representations. Additionally, integrating an attention mechanism further enhances modality correlation, thereby improving fusion effectiveness. On the Multi-ZOL dataset, our method achieves an accuracy of 90.7% and an F1 score of 90.8%. Similarly, on the Ctrip dataset, it attains an accuracy of 83.6% and an F1 score of 84.1%.","PeriodicalId":54045,"journal":{"name":"International Journal of Information Systems in the Service Sector","volume":"211 ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Systems in the Service Sector","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijisss.349564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of tourism services presents significant opportunities for extracting and analyzing customer sentiment. However, with the advent of multimodality, travel reviews have brought new challenges. Early methods for detecting such reviews merely combined text and image features, resulting in poor feature correlation. To address this issue, our study proposes a novel multimodal tourism review sentiment analysis method enhanced by relevant features. Initially, we employ a fusion model that combines BERT and Text-CNN for text feature extraction. This approach strengthens semantic relationships and filters noise effectively. Subsequently, we utilize ResNet-51 for image feature extraction, leveraging its ability to learn complex visual representations. Additionally, integrating an attention mechanism further enhances modality correlation, thereby improving fusion effectiveness. On the Multi-ZOL dataset, our method achieves an accuracy of 90.7% and an F1 score of 90.8%. Similarly, on the Ctrip dataset, it attains an accuracy of 83.6% and an F1 score of 84.1%.
期刊介绍:
The International Journal of Information Systems in the Service Sector (IJISSS) provides a significant channel for practitioners and researchers (from both public and private areas of the service sector), software developers, and vendors to contribute and circulate ground-breaking work and shape future directions for research. IJISSS assists industrial professionals in applying various advanced information technologies. It explains the relationship between the advancement of the service sector and the evolution of information systems.