A physics-informed deep learning-based urban building thermal comfort modeling and prediction framework for identifying thermally vulnerable building stock
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"A physics-informed deep learning-based urban building thermal comfort modeling and prediction framework for identifying thermally vulnerable building stock","authors":"Omprakash Ramalingam Rethnam, Albert Thomas","doi":"10.1108/sasbe-02-2024-0047","DOIUrl":null,"url":null,"abstract":"PurposeDue to the increasing frequency of extreme weather and densifying urban landscapes, residences are susceptible to heat-related discomfort, especially those in a naturally ventilated built environment in tropical climates. Indoor thermal comfort is thus paramount to building sustainability and improving occupants' health and well-being. However, to assess indoor thermal comfort considering the urban context, it is conventional to use questionnaire surveys and monitoring units, which are both case-centric and time-intensive. This study presents a dynamic computational thermal comfort modeling framework that can determine indoor thermal comfort at an urban scale to bridge this gap.Design/methodology/approachThe framework culminates in developing a deep learning model for predicting the accurate hourly indoor temperature of urban building stock by the coupling urban scale capabilities of environment modeling with single-building dynamic thermal simulations.FindingsUsing the framework, a surrogate model is created and verified for Dharavi, India's informal urban settlement. The results indicated that the developed surrogate model could predict the building's indoor temperature in several complex new urban scenarios with different building orientations, layouts, building-to-building distances and surrounding building heights, using five different random urban representative scenarios as the training set. The prediction accuracy was reliable, as evidenced by the mean bias error (MBE) and coefficient of (CV) root mean squared error (MSE) falling between 0 and 5%. The findings also showed that if the urban context is ignored, estimates of annual discomfort hours may be inaccurate by as much as 70%.Social implicationsThe developed computational framework could help regulators and policymakers engage in more informed and quantitative decision-making and direct efforts to enhance the thermal comfort of low-income dwellings and informal settlements.Originality/valueUp to this point, majority of literature that has been presented has concentrated on building a body of knowledge about urban-based modeling from an energy management standpoint. In contrast, this study suggests a dynamic computational thermal comfort modeling framework that takes into account the urban context of the neighborhood while examining the indoor thermal comfort of the residential building stock.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/sasbe-02-2024-0047","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeDue to the increasing frequency of extreme weather and densifying urban landscapes, residences are susceptible to heat-related discomfort, especially those in a naturally ventilated built environment in tropical climates. Indoor thermal comfort is thus paramount to building sustainability and improving occupants' health and well-being. However, to assess indoor thermal comfort considering the urban context, it is conventional to use questionnaire surveys and monitoring units, which are both case-centric and time-intensive. This study presents a dynamic computational thermal comfort modeling framework that can determine indoor thermal comfort at an urban scale to bridge this gap.Design/methodology/approachThe framework culminates in developing a deep learning model for predicting the accurate hourly indoor temperature of urban building stock by the coupling urban scale capabilities of environment modeling with single-building dynamic thermal simulations.FindingsUsing the framework, a surrogate model is created and verified for Dharavi, India's informal urban settlement. The results indicated that the developed surrogate model could predict the building's indoor temperature in several complex new urban scenarios with different building orientations, layouts, building-to-building distances and surrounding building heights, using five different random urban representative scenarios as the training set. The prediction accuracy was reliable, as evidenced by the mean bias error (MBE) and coefficient of (CV) root mean squared error (MSE) falling between 0 and 5%. The findings also showed that if the urban context is ignored, estimates of annual discomfort hours may be inaccurate by as much as 70%.Social implicationsThe developed computational framework could help regulators and policymakers engage in more informed and quantitative decision-making and direct efforts to enhance the thermal comfort of low-income dwellings and informal settlements.Originality/valueUp to this point, majority of literature that has been presented has concentrated on building a body of knowledge about urban-based modeling from an energy management standpoint. In contrast, this study suggests a dynamic computational thermal comfort modeling framework that takes into account the urban context of the neighborhood while examining the indoor thermal comfort of the residential building stock.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico