Ren Yu, Yao Wang, Lei Wang, Xiangwei Jiang, Jiasheng Dong
{"title":"Corrosion mechanism of K411 superalloy in sulfur-containing environment: sulfidation promoting internal nitridation","authors":"Ren Yu, Yao Wang, Lei Wang, Xiangwei Jiang, Jiasheng Dong","doi":"10.1515/corrrev-2024-0005","DOIUrl":null,"url":null,"abstract":"\n Corrosion exposure study was conducted on the commercial nickel-based K411 superalloy in a simulated gas turbine operating environment (air + 2 vol% SO2) at 900 °C up to 2000 h. The corrosion behavior of the alloy was quantificationally analyzed from both morphological and chemical points with SEM, XRD, EDS, and EPMA. The results show that the formation of fine TiN inside the oxide layer can be strongly accelerated with the introduction of SO2. Sulfide is assumed as diffusion channels for gas molecules that accelerate internal nitridation. Large-volume variation caused by the TiN formation leads to a stress gradient, which induces Cr and Ni elements from inside to the surface of the alloy. The oxide scales release the compressive stresses generated by internal nitridation through forming protrusions on the surface, which is a potential risk for alloy failure. The corrosion behavior of K411 superalloy is controlled by a combination of oxidation, sulfidation, and internal nitridation whereby the relevant corrosion mechanism has been given.","PeriodicalId":10721,"journal":{"name":"Corrosion Reviews","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/corrrev-2024-0005","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Corrosion exposure study was conducted on the commercial nickel-based K411 superalloy in a simulated gas turbine operating environment (air + 2 vol% SO2) at 900 °C up to 2000 h. The corrosion behavior of the alloy was quantificationally analyzed from both morphological and chemical points with SEM, XRD, EDS, and EPMA. The results show that the formation of fine TiN inside the oxide layer can be strongly accelerated with the introduction of SO2. Sulfide is assumed as diffusion channels for gas molecules that accelerate internal nitridation. Large-volume variation caused by the TiN formation leads to a stress gradient, which induces Cr and Ni elements from inside to the surface of the alloy. The oxide scales release the compressive stresses generated by internal nitridation through forming protrusions on the surface, which is a potential risk for alloy failure. The corrosion behavior of K411 superalloy is controlled by a combination of oxidation, sulfidation, and internal nitridation whereby the relevant corrosion mechanism has been given.
期刊介绍:
Corrosion Reviews is an international bimonthly journal devoted to critical reviews and, to a lesser extent, outstanding original articles that are key to advancing the understanding and application of corrosion science and engineering in the service of society. Papers may be of a theoretical, experimental or practical nature, provided that they make a significant contribution to knowledge in the field.