Schrödinger evolution of a scalar field in Riemannian and pseudo Riemannian expanding metrics

Z. Haba
{"title":"Schrödinger evolution of a scalar field in Riemannian and pseudo Riemannian expanding metrics","authors":"Z. Haba","doi":"10.1209/0295-5075/ad64fe","DOIUrl":null,"url":null,"abstract":"\n We study the quantum field theory (QFT) of a scalar field in the Schrödinger picture in the functional formulation. We derive a formula for the evolution kernel in a flat expanding metric. We discuss a transition between Riemannian and pseudoRiemannian metrics gµν (signature inversion). We express the real time Schrödinger evolution by the Brownian motion. We discuss the Feynman integral for a scalar field in a radiation background. We show that the unitary Schrödinger evolution for positive time can go over for negative time into a dissipative evolution as a consequence of the imaginary value of √- det(gµν). The time evolution remains unitary if √- det(gµν) in the Hamiltonian is replaced by √| det(gµν)|.","PeriodicalId":503117,"journal":{"name":"Europhysics Letters","volume":" 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad64fe","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the quantum field theory (QFT) of a scalar field in the Schrödinger picture in the functional formulation. We derive a formula for the evolution kernel in a flat expanding metric. We discuss a transition between Riemannian and pseudoRiemannian metrics gµν (signature inversion). We express the real time Schrödinger evolution by the Brownian motion. We discuss the Feynman integral for a scalar field in a radiation background. We show that the unitary Schrödinger evolution for positive time can go over for negative time into a dissipative evolution as a consequence of the imaginary value of √- det(gµν). The time evolution remains unitary if √- det(gµν) in the Hamiltonian is replaced by √| det(gµν)|.
标量场在黎曼和伪黎曼扩展度量中的薛定谔演化
我们以函数形式研究了薛定谔图景中标量场的量子场论(QFT)。我们推导出了膨胀度量中的演化核公式。我们讨论了黎曼和伪黎曼度量 gµν(签名反转)之间的过渡。我们用布朗运动表达实时薛定谔演化。我们讨论了辐射背景中标量场的费曼积分。我们证明,由于 √- det(gµν)的虚值,正时间的薛定谔单元演化在负时间可能会变成耗散演化。如果用 √| det(gµν)|代替哈密顿中的 √- det(gµν),时间演化将保持单一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信