Property Evaluation of AA2014 Reinforced with Synthesized Novel Mixture Processed through Squeeze Casting Technique

IF 3.3 Q2 ENGINEERING, MANUFACTURING
Venkatraman Manokaran, Anthony Xavior Michael
{"title":"Property Evaluation of AA2014 Reinforced with Synthesized Novel Mixture Processed through Squeeze Casting Technique","authors":"Venkatraman Manokaran, Anthony Xavior Michael","doi":"10.3390/jmmp8040153","DOIUrl":null,"url":null,"abstract":"Aluminum alloy–graphene metal matrix composite is largely used for structural applications in the aerospace and space exploration sector. In this work, the preprocessed powder particles (AA 2014 and graphene) were used as a reinforcement material in a squeeze casting process. The powder mixture contained aluminum alloy powder 2014 with an average particle size of 25 μm and 0.5 wt% graphene nano powder (Grnp) with 10 nm (average) particle size. The powder mixture was mixed using the high-energy planetary ball milling (HEPBM) technique. The experimental results indicated that the novel mixture (AA 2014 and graphene powder) acted as a transporting agent of graphene particles, allowing them to disperse homogeneously in the stir pool in the final cast, resulting in the production of an isotropic composite material that could be considered for launch vehicle structural applications. Homogeneous dispersion of the graphene nanoparticles enhanced the interfacial bonding of 2014 matrix material, which resulted in particulate strengthening and the formation of a fine-grained microstructure in the casted composite plate. The mechanical properties of 0.5 wt% graphene-reinforced, hot-rolled composite plate was strengthened by the T6 condition. When compared to the values of unreinforced parent alloy, the ultimate tensile strength and the hardness value of the composite plate were found to be 420 MPa and 123 HRB, respectively.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8040153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum alloy–graphene metal matrix composite is largely used for structural applications in the aerospace and space exploration sector. In this work, the preprocessed powder particles (AA 2014 and graphene) were used as a reinforcement material in a squeeze casting process. The powder mixture contained aluminum alloy powder 2014 with an average particle size of 25 μm and 0.5 wt% graphene nano powder (Grnp) with 10 nm (average) particle size. The powder mixture was mixed using the high-energy planetary ball milling (HEPBM) technique. The experimental results indicated that the novel mixture (AA 2014 and graphene powder) acted as a transporting agent of graphene particles, allowing them to disperse homogeneously in the stir pool in the final cast, resulting in the production of an isotropic composite material that could be considered for launch vehicle structural applications. Homogeneous dispersion of the graphene nanoparticles enhanced the interfacial bonding of 2014 matrix material, which resulted in particulate strengthening and the formation of a fine-grained microstructure in the casted composite plate. The mechanical properties of 0.5 wt% graphene-reinforced, hot-rolled composite plate was strengthened by the T6 condition. When compared to the values of unreinforced parent alloy, the ultimate tensile strength and the hardness value of the composite plate were found to be 420 MPa and 123 HRB, respectively.
用合成的新型混合物强化通过挤压铸造技术加工的 AA2014 的性能评估
铝合金-石墨烯金属基复合材料主要用于航空航天和太空探索领域的结构应用。在这项工作中,预处理的粉末颗粒(2014 年铝合金和石墨烯)被用作挤压铸造工艺中的增强材料。粉末混合物包含平均粒径为 25 μm 的 2014 铝合金粉末和 0.5 wt%、平均粒径为 10 nm 的石墨烯纳米粉末(Grnp)。粉末混合物采用高能行星球磨(HEPBM)技术进行混合。实验结果表明,新型混合物(AA 2014 和石墨烯粉末)可作为石墨烯颗粒的运输剂,使其在最终浇铸的搅拌池中均匀分散,从而生产出一种各向同性的复合材料,可考虑用于运载火箭的结构应用。石墨烯纳米颗粒的均匀分散增强了 2014 年基体材料的界面结合力,从而实现了颗粒强化,并在浇铸的复合材料板中形成了细粒微结构。在 T6 条件下,0.5 wt% 石墨烯增强热轧复合板的力学性能得到了增强。与未增强的母合金相比,复合板的极限抗拉强度和硬度值分别达到了 420 MPa 和 123 HRB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信