Tao Wang, Xin Li, Jihui Zhang, Shenhui Chen, Jinghao Ma, Cunhao Lin
{"title":"Fractional Sliding Mode Observer Control Strategy for Three-Phase PWM Rectifier","authors":"Tao Wang, Xin Li, Jihui Zhang, Shenhui Chen, Jinghao Ma, Cunhao Lin","doi":"10.3390/wevj15070316","DOIUrl":null,"url":null,"abstract":"This research presents a novel current loop control strategy for a three-phase PWM rectifier system aimed at mitigating challenges related to substandard power quality, excessive current harmonics, and insufficient robustness. The suggested approach combines an extended state observer (ESO) with dual-power sliding mode control that is further enhanced by fractional-order micro-integral operators. This amalgamation enhances the adaptability of the controller to system dynamics and augments the flexibility of the current loop control mechanism. The results of this integration include diminished system oscillations, heightened immunity to external disturbances, and improved robustness and dynamics of the overall system. Through MATLAB/Simulink simulations, the effectiveness of the proposed control methodology is validated, demonstrating superior performance in terms of robustness, dynamic response, power quality enhancement, and mitigation of current harmonics when compared to conventional PI control and standard fractional-order dual-power sliding mode control techniques.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15070316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This research presents a novel current loop control strategy for a three-phase PWM rectifier system aimed at mitigating challenges related to substandard power quality, excessive current harmonics, and insufficient robustness. The suggested approach combines an extended state observer (ESO) with dual-power sliding mode control that is further enhanced by fractional-order micro-integral operators. This amalgamation enhances the adaptability of the controller to system dynamics and augments the flexibility of the current loop control mechanism. The results of this integration include diminished system oscillations, heightened immunity to external disturbances, and improved robustness and dynamics of the overall system. Through MATLAB/Simulink simulations, the effectiveness of the proposed control methodology is validated, demonstrating superior performance in terms of robustness, dynamic response, power quality enhancement, and mitigation of current harmonics when compared to conventional PI control and standard fractional-order dual-power sliding mode control techniques.