sBERT: Parameter-Efficient Transformer-Based Deep Learning Model for Scientific Literature Classification

Knowledge Pub Date : 2024-07-18 DOI:10.3390/knowledge4030022
Mohammad Munzir Ahanger, M. A. Wani, Vasile Palade
{"title":"sBERT: Parameter-Efficient Transformer-Based Deep Learning Model for Scientific Literature Classification","authors":"Mohammad Munzir Ahanger, M. A. Wani, Vasile Palade","doi":"10.3390/knowledge4030022","DOIUrl":null,"url":null,"abstract":"This paper introduces a parameter-efficient transformer-based model designed for scientific literature classification. By optimizing the transformer architecture, the proposed model significantly reduces memory usage, training time, inference time, and the carbon footprint associated with large language models. The proposed approach is evaluated against various deep learning models and demonstrates superior performance in classifying scientific literature. Comprehensive experiments conducted on datasets from Web of Science, ArXiv, Nature, Springer, and Wiley reveal that the proposed model’s multi-headed attention mechanism and enhanced embeddings contribute to its high accuracy and efficiency, making it a robust solution for text classification tasks.","PeriodicalId":510293,"journal":{"name":"Knowledge","volume":" 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/knowledge4030022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a parameter-efficient transformer-based model designed for scientific literature classification. By optimizing the transformer architecture, the proposed model significantly reduces memory usage, training time, inference time, and the carbon footprint associated with large language models. The proposed approach is evaluated against various deep learning models and demonstrates superior performance in classifying scientific literature. Comprehensive experiments conducted on datasets from Web of Science, ArXiv, Nature, Springer, and Wiley reveal that the proposed model’s multi-headed attention mechanism and enhanced embeddings contribute to its high accuracy and efficiency, making it a robust solution for text classification tasks.
sBERT:基于参数高效变换器的科学文献分类深度学习模型
本文介绍了一种为科学文献分类而设计的基于转换器的参数高效模型。通过优化转换器架构,所提出的模型大大减少了内存使用量、训练时间、推理时间以及与大型语言模型相关的碳足迹。针对各种深度学习模型对所提出的方法进行了评估,结果表明该方法在科学文献分类方面表现出色。在来自 Web of Science、ArXiv、Nature、Springer 和 Wiley 的数据集上进行的综合实验表明,所提模型的多头关注机制和增强型嵌入有助于实现高准确率和高效率,使其成为文本分类任务的稳健解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信