{"title":"Study of an Electric Vehicle Charging Strategy Considering Split-Phase Voltage Quality","authors":"Fulu Yan, Mian Hua, Feng Zhao, Xuan Liang","doi":"10.3390/wevj15070315","DOIUrl":null,"url":null,"abstract":"Slow-charging electric vehicle (EV) loads are single-phase loads in the power distribution network (PDN). The random access of these EVs to the network brings to the forefront the split-phase voltage quality issues. Therefore, a two-layer EV charging strategy considering split-phase voltage quality is proposed in this paper. Issues with voltage unbalance (VU), split-phase voltage deviation (VD), and split-phase voltage harmonics (VHs) are included in the optimization objective model. An upgraded version of the multi-objective non-dominated sorting genetic algorithm (NSGA-II) is used in the inner layer of the model and to pass the generated EV phase selection scheme to the outer layer. The outer layer consists of a split-phase harmonic current algorithm based on the forward–backward generation method, and feeds the voltage quality calculation results to the inner layer. After several iterations, the optimal EV phase selection scheme can be obtained when the inner layer algorithm satisfies the convergence condition. The results gained for the example indicate that the suggested EV charging approach can effectively handle the PDN’s split-phase voltage quality. Furthermore, it enhances the energy efficiency of PDN operations and promotes further energy consumption.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 13","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15070315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Slow-charging electric vehicle (EV) loads are single-phase loads in the power distribution network (PDN). The random access of these EVs to the network brings to the forefront the split-phase voltage quality issues. Therefore, a two-layer EV charging strategy considering split-phase voltage quality is proposed in this paper. Issues with voltage unbalance (VU), split-phase voltage deviation (VD), and split-phase voltage harmonics (VHs) are included in the optimization objective model. An upgraded version of the multi-objective non-dominated sorting genetic algorithm (NSGA-II) is used in the inner layer of the model and to pass the generated EV phase selection scheme to the outer layer. The outer layer consists of a split-phase harmonic current algorithm based on the forward–backward generation method, and feeds the voltage quality calculation results to the inner layer. After several iterations, the optimal EV phase selection scheme can be obtained when the inner layer algorithm satisfies the convergence condition. The results gained for the example indicate that the suggested EV charging approach can effectively handle the PDN’s split-phase voltage quality. Furthermore, it enhances the energy efficiency of PDN operations and promotes further energy consumption.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.