Tension/Compression Difference in Creep Resistances of Wrought Mg-Zn-Based Alloy with Icosahedral Quasicrystal Phases

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu-Lei Ying, Zhi-Ping Guan, Kai Guan, Pin-Kui Maa, Wei Yanb, Gang Wangc
{"title":"Tension/Compression Difference in Creep Resistances of Wrought Mg-Zn-Based Alloy with Icosahedral Quasicrystal Phases","authors":"Yu-Lei Ying,&nbsp;Zhi-Ping Guan,&nbsp;Kai Guan,&nbsp;Pin-Kui Maa,&nbsp;Wei Yanb,&nbsp;Gang Wangc","doi":"10.1007/s12540-024-01736-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, icosahedral quasicrystal phases (I-phases) distributed at grain boundary triple junctions were successfully obtained in Mg-6Zn-0.4Mn-0.3Al-0.2Ca (ZMAX6000) alloy through heat treatment. The effects of I-phases on tensile and compressive creep behaviors were investigated separately. The tensile creep resistance of the sample containing I-phases was superior to its compressive creep resistance under the same test conditions. Moreover, the sample exhibited a significant tension/compression difference in creep resistance. Tensile and compressive creep stress exponents of the sample were ~ 4.9 and ~ 2.3, which implied that the tensile and compressive creep mechanisms might be dislocation slip and grain boundary sliding, respectively. Microstructural characterizations revealed that I-phase could suppress the premature convergence of cracks at grain boundary triple junctions during tensile creep deformation. Nevertheless, cracks might be preferentially generated around I-phases distributed at grain boundary triple junctions due to grain boundary sliding, during compressive creep deformation. The different effects of I-phases on crack development could cause the tension/compression difference in the creep resistance of the alloy.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"31 1","pages":"60 - 69"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01736-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, icosahedral quasicrystal phases (I-phases) distributed at grain boundary triple junctions were successfully obtained in Mg-6Zn-0.4Mn-0.3Al-0.2Ca (ZMAX6000) alloy through heat treatment. The effects of I-phases on tensile and compressive creep behaviors were investigated separately. The tensile creep resistance of the sample containing I-phases was superior to its compressive creep resistance under the same test conditions. Moreover, the sample exhibited a significant tension/compression difference in creep resistance. Tensile and compressive creep stress exponents of the sample were ~ 4.9 and ~ 2.3, which implied that the tensile and compressive creep mechanisms might be dislocation slip and grain boundary sliding, respectively. Microstructural characterizations revealed that I-phase could suppress the premature convergence of cracks at grain boundary triple junctions during tensile creep deformation. Nevertheless, cracks might be preferentially generated around I-phases distributed at grain boundary triple junctions due to grain boundary sliding, during compressive creep deformation. The different effects of I-phases on crack development could cause the tension/compression difference in the creep resistance of the alloy.

Graphical Abstract

具有二十面体准晶相的锻造镁锌基合金抗蠕变性的拉伸/压缩差异
本研究成功地在Mg-6Zn-0.4Mn-0.3Al-0.2Ca (ZMAX6000)合金中通过热处理获得了分布在晶界三结处的二十面体准晶相(i相)。分别研究了i相对拉伸和压缩蠕变行为的影响。在相同的试验条件下,含i相试样的抗拉蠕变性能优于抗压蠕变性能。此外,样品在抗蠕变方面表现出显著的拉伸/压缩差异。试样的拉伸和压缩蠕变应力指数分别为~ 4.9和~ 2.3,表明拉伸和压缩蠕变机制可能分别为位错滑移和晶界滑动。显微组织表征表明,在拉伸蠕变过程中,i相能够抑制晶界三结处裂纹的过早收敛。然而,在压缩蠕变过程中,由于晶界滑动,裂纹可能优先在晶界三结处分布的i相周围产生。由于i相对裂纹发展的影响不同,导致合金抗蠕变性能的拉压差异。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信