{"title":"Hybrid Detection Method for Multi-Intent Recognition in Air–Ground Communication Text","authors":"Weijun Pan, Zixuan Wang, Zhuang Wang, Yidi Wang, Yuanjing Huang","doi":"10.3390/aerospace11070588","DOIUrl":null,"url":null,"abstract":"In recent years, the civil aviation industry has actively promoted the automation and intelligence of control processes with the increasing use of various artificial intelligence technologies. Air–ground communication, as the primary means of interaction between controllers and pilots, typically involves one or more intents. Recognizing multiple intents within air–ground communication texts is a critical step in automating and advancing the control process intelligently. Therefore, this study proposes a hybrid detection method for multi-intent recognition in air–ground communication text. This method improves recognition accuracy by using different models for single-intent texts and multi-intent texts. First, the air–ground communication text is divided into two categories using multi-intent detection technology: single-intent text and multi-intent text. Next, for single-intent text, the Enhanced Representation through Knowledge Integration (ERNIE) 3.0 model is used for recognition; while the A Lite Bidirectional Encoder Representations from Transformers (ALBERT)_Sequence-to-Sequence_Attention (ASA) model is proposed for identifying multi-intent texts. Finally, combining the recognition results from the two models yields the final result. Experimental results demonstrate that using the ASA model for multi-intent text recognition achieved an accuracy rate of 97.84%, which is 0.34% higher than the baseline ALBERT model and 0.15% to 0.87% higher than other improved models based on ALBERT and ERNIE 3.0. The single-intent recognition model achieved an accuracy of 96.23% when recognizing single-intent texts, which is at least 2.18% higher than the multi-intent recognition model. The results indicate that employing different models for various types of texts can substantially enhance recognition accuracy.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11070588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the civil aviation industry has actively promoted the automation and intelligence of control processes with the increasing use of various artificial intelligence technologies. Air–ground communication, as the primary means of interaction between controllers and pilots, typically involves one or more intents. Recognizing multiple intents within air–ground communication texts is a critical step in automating and advancing the control process intelligently. Therefore, this study proposes a hybrid detection method for multi-intent recognition in air–ground communication text. This method improves recognition accuracy by using different models for single-intent texts and multi-intent texts. First, the air–ground communication text is divided into two categories using multi-intent detection technology: single-intent text and multi-intent text. Next, for single-intent text, the Enhanced Representation through Knowledge Integration (ERNIE) 3.0 model is used for recognition; while the A Lite Bidirectional Encoder Representations from Transformers (ALBERT)_Sequence-to-Sequence_Attention (ASA) model is proposed for identifying multi-intent texts. Finally, combining the recognition results from the two models yields the final result. Experimental results demonstrate that using the ASA model for multi-intent text recognition achieved an accuracy rate of 97.84%, which is 0.34% higher than the baseline ALBERT model and 0.15% to 0.87% higher than other improved models based on ALBERT and ERNIE 3.0. The single-intent recognition model achieved an accuracy of 96.23% when recognizing single-intent texts, which is at least 2.18% higher than the multi-intent recognition model. The results indicate that employing different models for various types of texts can substantially enhance recognition accuracy.