Estimation of Leaf Area Index for Dendrocalamus giganteus Based on Multi-Source Remote Sensing Data

Forests Pub Date : 2024-07-19 DOI:10.3390/f15071257
Zhen Qin, Huanfen Yang, Qingtai Shu, Jinge Yu, Li Xu, Mingxing Wang, Cuifen Xia, Dandan Duan
{"title":"Estimation of Leaf Area Index for Dendrocalamus giganteus Based on Multi-Source Remote Sensing Data","authors":"Zhen Qin, Huanfen Yang, Qingtai Shu, Jinge Yu, Li Xu, Mingxing Wang, Cuifen Xia, Dandan Duan","doi":"10.3390/f15071257","DOIUrl":null,"url":null,"abstract":"The Leaf Area Index (LAI) plays a crucial role in assessing the health of forest ecosystems. This study utilized ICESat-2/ATLAS as the primary information source, integrating 51 measured sample datasets, and employed the Sequential Gaussian Conditional Simulation (SGCS) method to derive surface grid information for the study area. The backscattering coefficient and texture feature factor from Sentinel-1, as well as the spectral band and vegetation index factors from Sentinel-2, were integrated. The random forest (RF), gradient-boosted regression tree (GBRT) model, and K-nearest neighbor (KNN) method were employed to construct the LAI estimation model. The optimal model, RF, was selected to conduct accuracy analysis of various remote sensing data combinations. The spatial distribution map of Dendrocalamus giganteus in Xinping County was then generated using the optimal combination model. The findings reveal the following: (1) Four key parameters—optimal fitted segmented terrain height, interpolated terrain surface height, absolute mean canopy height, and solar elevation angle—are significantly correlated. (2) The RF model constructed using a combination of ICESat-2/ATLAS, Sentinel-1, and Sentinel-2 data achieved optimal accuracy, with a coefficient of determination (R2) of 0.904, root mean square error (RMSE) of 0.384, mean absolute error (MAE) of 0.319, overall estimation accuracy (P1) of 88.96%, and relative root mean square error (RRMSE) of 11.04%. (3) The accuracy of LAI estimation using a combination of ICESat-2/ATLAS, Sentinel-1, and Sentinel-2 remote sensing data showed slight improvement compared to using either ICESat-2/ATLAS data combined with Sentinel-1 or Sentinel-2 data alone, with a significant enhancement in LAI estimation accuracy compared to using ICESat-2/ATLAS data alone. (4) LAI values in the study area ranged mainly from 2.29 to 2.51, averaging 2.4. Research indicates that employing ICESat-2/ATLAS spaceborne LiDAR data for regional-scale LAI estimation presents clear advantages. Incorporating SAR data and optical imagery and utilizing diverse data types for complementary information significantly enhances the accuracy of LAI estimation, demonstrating the feasibility of LAI inversion with multi-source remote sensing data. This approach offers an innovative framework for utilizing multi-source remote sensing data for regional-scale LAI inversion, demonstrates a methodology for integrating various remote sensing data, and serves as a reference for low-cost high-precision regional-scale LAI estimation.","PeriodicalId":505742,"journal":{"name":"Forests","volume":" 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/f15071257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Leaf Area Index (LAI) plays a crucial role in assessing the health of forest ecosystems. This study utilized ICESat-2/ATLAS as the primary information source, integrating 51 measured sample datasets, and employed the Sequential Gaussian Conditional Simulation (SGCS) method to derive surface grid information for the study area. The backscattering coefficient and texture feature factor from Sentinel-1, as well as the spectral band and vegetation index factors from Sentinel-2, were integrated. The random forest (RF), gradient-boosted regression tree (GBRT) model, and K-nearest neighbor (KNN) method were employed to construct the LAI estimation model. The optimal model, RF, was selected to conduct accuracy analysis of various remote sensing data combinations. The spatial distribution map of Dendrocalamus giganteus in Xinping County was then generated using the optimal combination model. The findings reveal the following: (1) Four key parameters—optimal fitted segmented terrain height, interpolated terrain surface height, absolute mean canopy height, and solar elevation angle—are significantly correlated. (2) The RF model constructed using a combination of ICESat-2/ATLAS, Sentinel-1, and Sentinel-2 data achieved optimal accuracy, with a coefficient of determination (R2) of 0.904, root mean square error (RMSE) of 0.384, mean absolute error (MAE) of 0.319, overall estimation accuracy (P1) of 88.96%, and relative root mean square error (RRMSE) of 11.04%. (3) The accuracy of LAI estimation using a combination of ICESat-2/ATLAS, Sentinel-1, and Sentinel-2 remote sensing data showed slight improvement compared to using either ICESat-2/ATLAS data combined with Sentinel-1 or Sentinel-2 data alone, with a significant enhancement in LAI estimation accuracy compared to using ICESat-2/ATLAS data alone. (4) LAI values in the study area ranged mainly from 2.29 to 2.51, averaging 2.4. Research indicates that employing ICESat-2/ATLAS spaceborne LiDAR data for regional-scale LAI estimation presents clear advantages. Incorporating SAR data and optical imagery and utilizing diverse data types for complementary information significantly enhances the accuracy of LAI estimation, demonstrating the feasibility of LAI inversion with multi-source remote sensing data. This approach offers an innovative framework for utilizing multi-source remote sensing data for regional-scale LAI inversion, demonstrates a methodology for integrating various remote sensing data, and serves as a reference for low-cost high-precision regional-scale LAI estimation.
基于多源遥感数据估算大叶女贞的叶面积指数
叶面积指数(LAI)在评估森林生态系统健康状况方面起着至关重要的作用。本研究利用 ICESat-2/ATLAS 作为主要信息源,整合了 51 个实测样本数据集,并采用序列高斯条件模拟(SGCS)方法得出研究区域的地表网格信息。集成了哨兵-1 的后向散射系数和纹理特征因子,以及哨兵-2 的光谱波段和植被指数因子。采用随机森林(RF)、梯度增强回归树(GBRT)模型和 K-nearest neighbor(KNN)方法构建 LAI 估算模型。在对各种遥感数据组合进行精度分析时,选择了最优模型 RF。然后利用最优组合模型生成了新平县石斛的空间分布图。研究结果表明(1)四个关键参数--最佳拟合分割地形高度、内插地形表面高度、树冠绝对平均高度和太阳仰角--具有显著的相关性。(2)利用 ICESat-2/ATLAS、Sentinel-1 和 Sentinel-2 数据组合构建的射频模型达到了最佳精度,其判定系数(R2)为 0.904,均方根误差(RMSE)为 0.384,平均绝对误差(MAE)为 0.319,总体估计精度(P1)为 88.96%,相对均方根误差(RRMSE)为 11.04%。(3)与单独使用ICESat-2/ATLAS、Sentinel-1和Sentinel-2遥感数据相比,综合使用ICESat-2/ATLAS、Sentinel-1和Sentinel-2遥感数据估算LAI的精度略有提高,与单独使用ICESat-2/ATLAS数据相比,LAI估算精度显著提高。(4) 研究区域的 LAI 值主要介于 2.29 至 2.51 之间,平均值为 2.4。研究表明,利用 ICESat-2/ATLAS 星载激光雷达数据进行区域尺度 LAI 估算具有明显优势。结合合成孔径雷达数据和光学图像,利用不同数据类型的互补信息,大大提高了 LAI 估算的准确性,证明了利用多源遥感数据进行 LAI 反演的可行性。该方法为利用多源遥感数据进行区域尺度 LAI 反演提供了一个创新框架,展示了整合各种遥感数据的方法,为低成本高精度区域尺度 LAI 估算提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信