{"title":"Bayesian linearized inversion for petrophysical and pore-connectivity parameters with seismic elastic data of carbonate reservoirs","authors":"Jing Ba, Jiawei Chen, Qiang Guo, Wei Cheng, Zhifang Yang, Xiao Chen, Cong Luo","doi":"10.1093/jge/gxae076","DOIUrl":null,"url":null,"abstract":"\n Carbonate reservoirs are important targets for promoting the oil and gas reserve exploration and production in China. However, such reservoirs usually contain the developed complex pore structures, which heavily affect the precision in seismic prediction of petrophysical parameters. As one of the most important parameters to characterize reservoir rock, pore-related parameters can not only describe the pore structure, but also be used to evaluate the oil/gas bearing capabilities of potential reservoirs. The conventional rock-physics models (e.g. Gassmann's model) are formulated assuming fully-connected pores, which is unable to accurately capture the geometrical complexity in real rocks. In order to characterize the influences of multiple pores on the elastic properties, this work presents a rock-physics modelling method for carbonates, wherein the percentage composition of connected pores is equivalently quantified as the pore-connectivity factor. The method treats the pore-connectivity factor as an objective variable to characterize the spatial variations of pore structure. Specifically, the method combines the differential equivalent medium theory and Gassmann's model, and derives a linearized forward operator to quantitatively link porosity, water saturation, and pore-connectivity factor to seismic elastic parameters. According to the Bayesian linear inverse theory, the simultaneous estimation of petrophysical and pore-connectivity parameters is achieved. To characterize the statistical variations with multiple lithofacies, the Gaussian mixture model is employed to quantify the prior distribution of the objective variables. The posterior distribution of the objective variables is analytically expressed with the linearized forward operator. Numerical experiments show that the accuracy of the proposed method in predicting elastic parameters is improved. Compared with the conventional Xu-White model and the varying pore aspect ratio method, the accuracy of predicted P-wave velocity increases by 10.29% and 1.33%, respectively, and the predicted S-wave velocity increases by 6.44% and 0.03%, in terms of correlation coefficient. The application to the field data validates the effectiveness of the method, wherein the porosity and water saturation results help indicating the spatial distribution of potential reservoirs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"6 21","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbonate reservoirs are important targets for promoting the oil and gas reserve exploration and production in China. However, such reservoirs usually contain the developed complex pore structures, which heavily affect the precision in seismic prediction of petrophysical parameters. As one of the most important parameters to characterize reservoir rock, pore-related parameters can not only describe the pore structure, but also be used to evaluate the oil/gas bearing capabilities of potential reservoirs. The conventional rock-physics models (e.g. Gassmann's model) are formulated assuming fully-connected pores, which is unable to accurately capture the geometrical complexity in real rocks. In order to characterize the influences of multiple pores on the elastic properties, this work presents a rock-physics modelling method for carbonates, wherein the percentage composition of connected pores is equivalently quantified as the pore-connectivity factor. The method treats the pore-connectivity factor as an objective variable to characterize the spatial variations of pore structure. Specifically, the method combines the differential equivalent medium theory and Gassmann's model, and derives a linearized forward operator to quantitatively link porosity, water saturation, and pore-connectivity factor to seismic elastic parameters. According to the Bayesian linear inverse theory, the simultaneous estimation of petrophysical and pore-connectivity parameters is achieved. To characterize the statistical variations with multiple lithofacies, the Gaussian mixture model is employed to quantify the prior distribution of the objective variables. The posterior distribution of the objective variables is analytically expressed with the linearized forward operator. Numerical experiments show that the accuracy of the proposed method in predicting elastic parameters is improved. Compared with the conventional Xu-White model and the varying pore aspect ratio method, the accuracy of predicted P-wave velocity increases by 10.29% and 1.33%, respectively, and the predicted S-wave velocity increases by 6.44% and 0.03%, in terms of correlation coefficient. The application to the field data validates the effectiveness of the method, wherein the porosity and water saturation results help indicating the spatial distribution of potential reservoirs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.