Solid Knitting

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Yuichi Hirose, M. Gillespie, Angelica M. Bonilla Fominaya, James Mccann
{"title":"Solid Knitting","authors":"Yuichi Hirose, M. Gillespie, Angelica M. Bonilla Fominaya, James Mccann","doi":"10.1145/3658123","DOIUrl":null,"url":null,"abstract":"We introduce solid knitting, a new fabrication technique that combines the layer-by-layer volumetric approach of 3D printing with the topologically-entwined stitch structure of knitting to produce solid 3D objects. We define the basic building blocks of solid knitting and demonstrate a working prototype of a solid knitting machine controlled by a low-level instruction language, along with a volumetric design tool for creating machine-knittable patterns. Solid knitting uses a course-wale-layer structure, where every loop in a solid-knit object passes through both a loop from the previous layer and a loop from the previous course. Our machine uses two beds of latch needles to create stitches like a conventional V-bed knitting machine, but augments these needles with a pair of rotating hook arrays to provide storage locations for all of the loops in one layer of the object. It can autonomously produce solid-knit prisms of arbitrary length, although it requires manual intervention to cast on the first layer and bind off the final row. Our design tool allows users to create solid knitting patterns by connecting elementary stitches; objects designed in our interface can---after basic topological checks and constraint propagation---be exported as a sequence of instructions for fabrication on the solid knitting machine. We validate our solid knitting hardware and software on prism examples, detail the mechanical errors which we have encountered, and discuss potential extensions to the capability of our solid knitting machine.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658123","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce solid knitting, a new fabrication technique that combines the layer-by-layer volumetric approach of 3D printing with the topologically-entwined stitch structure of knitting to produce solid 3D objects. We define the basic building blocks of solid knitting and demonstrate a working prototype of a solid knitting machine controlled by a low-level instruction language, along with a volumetric design tool for creating machine-knittable patterns. Solid knitting uses a course-wale-layer structure, where every loop in a solid-knit object passes through both a loop from the previous layer and a loop from the previous course. Our machine uses two beds of latch needles to create stitches like a conventional V-bed knitting machine, but augments these needles with a pair of rotating hook arrays to provide storage locations for all of the loops in one layer of the object. It can autonomously produce solid-knit prisms of arbitrary length, although it requires manual intervention to cast on the first layer and bind off the final row. Our design tool allows users to create solid knitting patterns by connecting elementary stitches; objects designed in our interface can---after basic topological checks and constraint propagation---be exported as a sequence of instructions for fabrication on the solid knitting machine. We validate our solid knitting hardware and software on prism examples, detail the mechanical errors which we have encountered, and discuss potential extensions to the capability of our solid knitting machine.
纯色针织
我们介绍了实心编织技术,这是一种新的制造技术,它将三维打印的逐层体积方法与编织的拓扑缠绕针迹结构相结合,从而制造出实心三维物体。我们定义了实体编织的基本构件,并展示了由低级指令语言控制的实体编织机工作原型,以及用于创建机器可编织图案的体积设计工具。实心编织采用 "层-层 "结构,实心编织物中的每个线圈都要穿过上一层的线圈和上一层的线圈。我们的机器与传统的 V 型针床针织机一样,使用两组舌针来编织针迹,但在这些舌针上增加了一对旋转钩阵列,以便为一层编织物中的所有线圈提供存储位置。它可以自主生产任意长度的实心编织棱柱,但需要人工干预第一层的投针和最后一行的装订。我们的设计工具允许用户通过连接基本针脚来创建实心编织图案;在我们的界面上设计的对象,经过基本的拓扑检查和约束传播后,可以导出为实心编织机上的编织指令序列。我们在棱镜实例上验证了我们的实心编织硬件和软件,详细介绍了我们遇到的机械错误,并讨论了实心编织机功能的潜在扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信