Unraveling the Surface-Diffusion Charge Contribution Studies of Zeolitic-Imidazolate-Frameworks-Based Core–Shell Structure for High-Performance Hybrid Supercapacitors

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Mansi, Prashant Dubey, Vishal Shrivastav, Marcin Hołdyński, Shashank Sundriyal, Umesh K. Tiwari, Akash Deep
{"title":"Unraveling the Surface-Diffusion Charge Contribution Studies of Zeolitic-Imidazolate-Frameworks-Based Core–Shell Structure for High-Performance Hybrid Supercapacitors","authors":"Mansi,&nbsp;Prashant Dubey,&nbsp;Vishal Shrivastav,&nbsp;Marcin Hołdyński,&nbsp;Shashank Sundriyal,&nbsp;Umesh K. Tiwari,&nbsp;Akash Deep","doi":"10.1002/ente.202400722","DOIUrl":null,"url":null,"abstract":"<p>In this work, zeolitic imidazolate frameworks (ZIF-8@ZIF-67)-based core–shell structure as a supercapacitor electrode is synthesized. The core–shell structure is designed with a ZIF-8 core, onto which a ZIF-67 shell is grown. This unique architecture aims to expedite the diffusion of electrolyte ions, facilitate inner–outer metal ion electron transfer, and consequently enhance electrochemical performance. When used as an active electrode material, the material delivers 263.43 F g<sup>−1</sup> of capacitance at 0.5 A g<sup>−1</sup> of discharge rate. The core–shell structure exhibits 68% of surface contribution toward the total capacitance. At the scan rate of 50 mV s<sup>−1</sup>, the sample almost exhibits equal contribution of diffusion and surface charge contribution. Further an asymmetric supercapacitor (ASC) device is assembled, featuring a ZIF-8@ZIF-67 core–shell metal-organic framework (MOF) as a positive electrode and waste-tissue-paper-derived activated carbon as negative electrode using 1 <span>m</span> H<sub>2</sub>SO<sub>4</sub> aqueous electrolyte. The ASC device delivers an energy density of 38.4 Wh kg<sup><b>−1</b></sup> at the power density of 0.8 kW kg<sup>−1</sup>, along with long cycle life of 95.2% after an extensive 10 000 cycles. In this work, the significance of the ZIF-based core–shell structure in advancing supercapacitor technology, which further can be extended to multiple core–shell structure and other MOF combination, is highlighted.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400722","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, zeolitic imidazolate frameworks (ZIF-8@ZIF-67)-based core–shell structure as a supercapacitor electrode is synthesized. The core–shell structure is designed with a ZIF-8 core, onto which a ZIF-67 shell is grown. This unique architecture aims to expedite the diffusion of electrolyte ions, facilitate inner–outer metal ion electron transfer, and consequently enhance electrochemical performance. When used as an active electrode material, the material delivers 263.43 F g−1 of capacitance at 0.5 A g−1 of discharge rate. The core–shell structure exhibits 68% of surface contribution toward the total capacitance. At the scan rate of 50 mV s−1, the sample almost exhibits equal contribution of diffusion and surface charge contribution. Further an asymmetric supercapacitor (ASC) device is assembled, featuring a ZIF-8@ZIF-67 core–shell metal-organic framework (MOF) as a positive electrode and waste-tissue-paper-derived activated carbon as negative electrode using 1 m H2SO4 aqueous electrolyte. The ASC device delivers an energy density of 38.4 Wh kg−1 at the power density of 0.8 kW kg−1, along with long cycle life of 95.2% after an extensive 10 000 cycles. In this work, the significance of the ZIF-based core–shell structure in advancing supercapacitor technology, which further can be extended to multiple core–shell structure and other MOF combination, is highlighted.

Abstract Image

揭示用于高性能混合超级电容器的沸石-咪唑啉框架核壳结构的表面扩散电荷贡献研究
本研究合成了基于沸石咪唑盐酸盐框架(ZIF-8@ZIF-67)的核壳结构作为超级电容器电极。这种核壳结构以 ZIF-8 为核,在其上生长 ZIF-67 壳。这种独特的结构旨在加快电解质离子的扩散,促进内外金属离子的电子转移,从而提高电化学性能。该材料用作活性电极材料时,在放电速率为 0.5 A g-1 时可产生 263.43 F g-1 的电容。核壳结构的表面电容占总电容的 68%。在 50 mV s-1 的扫描速率下,样品的扩散和表面电荷贡献几乎相等。此外,还组装了一种不对称超级电容器(ASC)装置,以 ZIF-8@ZIF-67 核壳金属有机框架(MOF)为正极,以废纸衍生的活性炭为负极,使用 1 m H2SO4 水电解质。在功率密度为 0.8 kW kg-1 的情况下,ASC 设备的能量密度为 38.4 Wh kg-1,并且经过 10 000 次循环后,其循环寿命长达 95.2%。这项研究强调了基于 ZIF 的核壳结构在推动超级电容器技术发展方面的重要意义,该结构还可进一步扩展到多核壳结构和其他 MOF 组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信