Akash Yadav, Ritesh Pandey, Navnit Jha, A. K. Misra
{"title":"MODELING THE EFFECTS OF PESTS AND PESTICIDE ON CROP YIELDS IN A MULTIPLE CROPPING SYSTEM","authors":"Akash Yadav, Ritesh Pandey, Navnit Jha, A. K. Misra","doi":"10.1142/s0218339024500396","DOIUrl":null,"url":null,"abstract":"Pest infestation poses a significant threat to agricultural crop yields, and to control it, farmers spray chemical pesticides. The persistent use of these chemical agents not only leads to pesticide residues within crops but also exerts collateral damage on the beneficial pest population. In this research work, we formulate a nonlinear mathematical model to assess the impacts of pesticide on crop yields within a multiple cropping system. Model analysis illustrates that crop consumption rates destabilize, and the spraying rate of pesticide stabilizes the system. Furthermore, we determine conditions for the global stability of the coexisting equilibrium and conduct a global sensitivity analysis to identify model parameters that significantly influence pest population density. Our findings emphasize that, for effective pest population control and enhanced crop yields, farmers should choose either pesticides with a high pest abatement rate or those with a higher pesticide uptake rate. Considering the spraying rate of pesticide as time-dependent, we also suggest an optimal control strategy to minimize the pest population and associated costs. We provide analytical results backed by numerical simulations implemented through the non-standard finite difference scheme to support our findings.","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339024500396","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pest infestation poses a significant threat to agricultural crop yields, and to control it, farmers spray chemical pesticides. The persistent use of these chemical agents not only leads to pesticide residues within crops but also exerts collateral damage on the beneficial pest population. In this research work, we formulate a nonlinear mathematical model to assess the impacts of pesticide on crop yields within a multiple cropping system. Model analysis illustrates that crop consumption rates destabilize, and the spraying rate of pesticide stabilizes the system. Furthermore, we determine conditions for the global stability of the coexisting equilibrium and conduct a global sensitivity analysis to identify model parameters that significantly influence pest population density. Our findings emphasize that, for effective pest population control and enhanced crop yields, farmers should choose either pesticides with a high pest abatement rate or those with a higher pesticide uptake rate. Considering the spraying rate of pesticide as time-dependent, we also suggest an optimal control strategy to minimize the pest population and associated costs. We provide analytical results backed by numerical simulations implemented through the non-standard finite difference scheme to support our findings.
期刊介绍:
The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to):
Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine.
Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology.
Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales.
Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis.
Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology.
Numerical simulations and computations; numerical study and analysis of biological data.
Epistemology; history of science.
The journal will also publish book reviews.