Jingxue Chen, Hang Yan, Zhiyuan Liu, Min Zhang, Hu Xiong, Shui Yu
{"title":"When Federated Learning Meets Privacy-Preserving Computation","authors":"Jingxue Chen, Hang Yan, Zhiyuan Liu, Min Zhang, Hu Xiong, Shui Yu","doi":"10.1145/3679013","DOIUrl":null,"url":null,"abstract":"Nowadays, with the development of artificial intelligence (AI), privacy issues attract wide attention from society and individuals. It is desirable to make the data available but invisible, i.e., to realize data analysis and calculation without disclosing the data to unauthorized entities. Federated learning (FL) has emerged as a promising privacy-preserving computation method for AI. However, new privacy issues have arisen in FL-based application because various inference attacks can still infer relevant information about the raw data from local models or gradients. This will directly lead to the privacy disclosure. Therefore, it is critical to resist these attacks to achieve complete privacy-preserving computation. In light of the overwhelming variety and a multitude of privacy-preserving computation protocols, we survey these protocols from a series of perspectives to supply better comprehension for researchers and scholars. Concretely, the classification of attacks is discussed including four kinds of inference attacks as well as malicious server and poisoning attack. Besides, this paper systematically captures the state of the art of privacy-preserving computation protocols by analyzing the design rationale, reproducing the experiment of classic schemes, and evaluating all discussed protocols in terms of efficiency and security properties. Finally, this survey identifies a number of interesting future directions.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3679013","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, with the development of artificial intelligence (AI), privacy issues attract wide attention from society and individuals. It is desirable to make the data available but invisible, i.e., to realize data analysis and calculation without disclosing the data to unauthorized entities. Federated learning (FL) has emerged as a promising privacy-preserving computation method for AI. However, new privacy issues have arisen in FL-based application because various inference attacks can still infer relevant information about the raw data from local models or gradients. This will directly lead to the privacy disclosure. Therefore, it is critical to resist these attacks to achieve complete privacy-preserving computation. In light of the overwhelming variety and a multitude of privacy-preserving computation protocols, we survey these protocols from a series of perspectives to supply better comprehension for researchers and scholars. Concretely, the classification of attacks is discussed including four kinds of inference attacks as well as malicious server and poisoning attack. Besides, this paper systematically captures the state of the art of privacy-preserving computation protocols by analyzing the design rationale, reproducing the experiment of classic schemes, and evaluating all discussed protocols in terms of efficiency and security properties. Finally, this survey identifies a number of interesting future directions.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.