A new fault location method for high-voltage transmission lines based on ICEEMDAN-MSA-ConvGRU model

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Taorong Jia, Lixiao Yao, Guoqing Yang
{"title":"A new fault location method for high-voltage transmission lines based on ICEEMDAN-MSA-ConvGRU model","authors":"Taorong Jia,&nbsp;Lixiao Yao,&nbsp;Guoqing Yang","doi":"10.1049/gtd2.13225","DOIUrl":null,"url":null,"abstract":"<p>Given the complex form of distribution line faults, the accuracy of fault location using traditional artificial intelligence networks needs to be further improved. Here, a combined fault location method is proposed for a 110 kV distribution line based on the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), mantis search algorithm (MSA), and convolutional gate recurrent unit (ConvGRU). Firstly, the study used the ICEEMDAN algorithm to decompose the signals and discard the high-frequency signals with low correlation so as to achieve the purpose of noise cancellation. Then, the study used the root mean square error (RMSE) of the ConvGRU model training as the adaptation value, optimized the internal parameters of the model using the MSA algorithm, and obtained a combined fault locating model. By using the proposed model, the effects of the fault form and transition impedance changes on the location accuracy were analysed, and the location accuracy was compared with other artificial intelligence methods. The location accuracy index showed that the proposed model had a better convergence speed of training error than the traditional model. Also, the RMSE of the localization results was reduced by 50%, with a higher fault location accuracy.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13225","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Given the complex form of distribution line faults, the accuracy of fault location using traditional artificial intelligence networks needs to be further improved. Here, a combined fault location method is proposed for a 110 kV distribution line based on the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), mantis search algorithm (MSA), and convolutional gate recurrent unit (ConvGRU). Firstly, the study used the ICEEMDAN algorithm to decompose the signals and discard the high-frequency signals with low correlation so as to achieve the purpose of noise cancellation. Then, the study used the root mean square error (RMSE) of the ConvGRU model training as the adaptation value, optimized the internal parameters of the model using the MSA algorithm, and obtained a combined fault locating model. By using the proposed model, the effects of the fault form and transition impedance changes on the location accuracy were analysed, and the location accuracy was compared with other artificial intelligence methods. The location accuracy index showed that the proposed model had a better convergence speed of training error than the traditional model. Also, the RMSE of the localization results was reduced by 50%, with a higher fault location accuracy.

Abstract Image

基于 ICEEMDAN-MSA-ConvGRU 模型的高压输电线路故障定位新方法
鉴于配电线路故障的复杂形式,使用传统人工智能网络进行故障定位的准确性有待进一步提高。本文提出了一种基于自适应噪声改进型完全集合经验模式分解(ICEEMDAN)、螳螂搜索算法(MSA)和卷积门递归单元(ConvGRU)的 110 千伏配电线路组合故障定位方法。首先,研究使用 ICEEMDAN 算法对信号进行分解,剔除相关性较低的高频信号,从而达到消除噪声的目的。然后,以 ConvGRU 模型训练的均方根误差(RMSE)作为适应值,利用 MSA 算法优化模型内部参数,得到组合故障定位模型。利用提出的模型,分析了故障形式和过渡阻抗变化对定位精度的影响,并将定位精度与其他人工智能方法进行了比较。定位精度指标表明,与传统模型相比,所提模型的训练误差收敛速度更快。同时,定位结果的均方根误差降低了 50%,故障定位精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信