Zhenhai Gao, S. Rao, Zien Zhang, Yupeng Wang, Yang Xiao, Quan Yuan, Weifeng Li
{"title":"Thermal runaway characteristics of Ni-rich lithium-ion batteries employing TPP-based electrolytes","authors":"Zhenhai Gao, S. Rao, Zien Zhang, Yupeng Wang, Yang Xiao, Quan Yuan, Weifeng Li","doi":"10.1115/1.4066013","DOIUrl":null,"url":null,"abstract":"\n Enhancing the safety performance of high-energy-density lithium-ion batteries are crucial for their widespread adoption. Herein, a cost-effective and highly efficient electrolyte additive, Triphenyl phosphate (TPP), demonstrates flame-retardant properties by scavenging hydrogen radicals in the flame, thereby inhibiting chain reactions and flame propagation to enhance the safety performance of graphite/LiNi0.8Co0.1Mn0.1O2 (NCM811) pouch cells. The results reveal that the capacity retention of cells without flame retardants, and those with the addition of 1 wt%, 3 wt%, 5 wt%, and 10 wt% TPP, is 96.4%, 92.1%, 84.15%, 71.0%, and 15.4% (1/2C 300 cycles), respectively. Furthermore, compared to cells without flame retardants, the highest temperature during thermal runaway decreases by 10.7%, 28.9%, 36.8%, and 40.4% with the addition of 1 wt%, 3 wt%, 5 wt%, and 10 wt% TPP, respectively. Through comprehensive analysis of the impact of flame-retardant additives on battery electrochemical performance and safety, it is determined that the optimal addition amount is 3 wt%. At this level, there are no significant flames during battery abuse, the triggering temperature for thermal runaway increases by 26.6°C, nd the maximum temperature decreases by 175°C. Moreover, even after 300 cycles at 1/2C, a capacity of 814.5mAh g-1 is retained, with a capacity retention rate of 84.1%. This study provides valuable insights into the mitigation of thermal runaway in high-energy-density power batteries.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4066013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing the safety performance of high-energy-density lithium-ion batteries are crucial for their widespread adoption. Herein, a cost-effective and highly efficient electrolyte additive, Triphenyl phosphate (TPP), demonstrates flame-retardant properties by scavenging hydrogen radicals in the flame, thereby inhibiting chain reactions and flame propagation to enhance the safety performance of graphite/LiNi0.8Co0.1Mn0.1O2 (NCM811) pouch cells. The results reveal that the capacity retention of cells without flame retardants, and those with the addition of 1 wt%, 3 wt%, 5 wt%, and 10 wt% TPP, is 96.4%, 92.1%, 84.15%, 71.0%, and 15.4% (1/2C 300 cycles), respectively. Furthermore, compared to cells without flame retardants, the highest temperature during thermal runaway decreases by 10.7%, 28.9%, 36.8%, and 40.4% with the addition of 1 wt%, 3 wt%, 5 wt%, and 10 wt% TPP, respectively. Through comprehensive analysis of the impact of flame-retardant additives on battery electrochemical performance and safety, it is determined that the optimal addition amount is 3 wt%. At this level, there are no significant flames during battery abuse, the triggering temperature for thermal runaway increases by 26.6°C, nd the maximum temperature decreases by 175°C. Moreover, even after 300 cycles at 1/2C, a capacity of 814.5mAh g-1 is retained, with a capacity retention rate of 84.1%. This study provides valuable insights into the mitigation of thermal runaway in high-energy-density power batteries.
期刊介绍:
The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.