Ahmed Sallam, G. Albaqawy, M. Touahmia, M. Boukendakdji, Mona M. E. Khalil
{"title":"Improving Mud Brick Durability in Ancient Closed-Box Tombs: A Graphene Oxide Nanoparticle Approach","authors":"Ahmed Sallam, G. Albaqawy, M. Touahmia, M. Boukendakdji, Mona M. E. Khalil","doi":"10.3390/buildings14072248","DOIUrl":null,"url":null,"abstract":"This paper presents a novel concept for significantly enhancing the strength and durability of ancient closed-box tombs. These tombs hold significant philosophical values, and their architecture serves as a valuable data source, providing insights into the cultural stage of the society in which it was constructed. Throughout medieval and modern times, clay bricks remained a prevalent material for tomb construction due to their affordability and design flexibility. However, these structures currently face neglect and weakening, requiring imperative intervention of protection to prevent them from potential deterioration or extinction. The key objective of this research is to explore the potential use of graphene oxide (GO), a novel nanomaterial, as a treatment method to enhance the durability of mud brick tombs in Aswan, Egypt. Samples of mud bricks were examined and characterized using various techniques, including SEM-EDX, TEM, PLM, XRF, XRD, and mechanical properties analysis. The results indicated that GO nanomaterials significantly improve the mechanical properties of mud brick tombs, allowing them to resist more compressive loading and ultimately resulting in more durable and long-lasting structures. By using these innovative materials, effective restoration and preservation of these ancient structures for future generations could be viable. This research has the potential to revolutionize the preservation of closed-box tombs, ensuring these historical landmarks stand longer the test of time.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14072248","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel concept for significantly enhancing the strength and durability of ancient closed-box tombs. These tombs hold significant philosophical values, and their architecture serves as a valuable data source, providing insights into the cultural stage of the society in which it was constructed. Throughout medieval and modern times, clay bricks remained a prevalent material for tomb construction due to their affordability and design flexibility. However, these structures currently face neglect and weakening, requiring imperative intervention of protection to prevent them from potential deterioration or extinction. The key objective of this research is to explore the potential use of graphene oxide (GO), a novel nanomaterial, as a treatment method to enhance the durability of mud brick tombs in Aswan, Egypt. Samples of mud bricks were examined and characterized using various techniques, including SEM-EDX, TEM, PLM, XRF, XRD, and mechanical properties analysis. The results indicated that GO nanomaterials significantly improve the mechanical properties of mud brick tombs, allowing them to resist more compressive loading and ultimately resulting in more durable and long-lasting structures. By using these innovative materials, effective restoration and preservation of these ancient structures for future generations could be viable. This research has the potential to revolutionize the preservation of closed-box tombs, ensuring these historical landmarks stand longer the test of time.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates