RevGNN: Negative Sampling Enhanced Contrastive Graph Learning for Academic Reviewer Recommendation

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Weibin Liao, Yifan Zhu, Yanyan Li, Qi Zhang, Zhonghong Ou, Xuesong Li
{"title":"RevGNN: Negative Sampling Enhanced Contrastive Graph Learning for Academic Reviewer Recommendation","authors":"Weibin Liao, Yifan Zhu, Yanyan Li, Qi Zhang, Zhonghong Ou, Xuesong Li","doi":"10.1145/3679200","DOIUrl":null,"url":null,"abstract":"Acquiring reviewers for academic submissions is a challenging recommendation scenario. Recent graph learning-driven models have made remarkable progress in the field of recommendation, but their performance in the academic reviewer recommendation task may suffer from a significant false negative issue. This arises from the assumption that unobserved edges represent negative samples. In fact, the mechanism of anonymous review results in inadequate exposure of interactions between reviewers and submissions, leading to a higher number of unobserved interactions compared to those caused by reviewers declining to participate. Therefore, investigating how to better comprehend the negative labeling of unobserved interactions in academic reviewer recommendations is a significant challenge. This study aims to tackle the ambiguous nature of unobserved interactions in academic reviewer recommendations. Specifically, we propose an unsupervised Pseudo Neg-Label strategy to enhance graph contrastive learning (GCL) for recommending reviewers for academic submissions, which we call RevGNN. RevGNN utilizes a two-stage encoder structure that encodes both scientific knowledge and behavior using Pseudo Neg-Label to approximate review preference. Extensive experiments on three real-world datasets demonstrate that RevGNN outperforms all baselines across four metrics. Additionally, detailed further analyses confirm the effectiveness of each component in RevGNN.","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3679200","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Acquiring reviewers for academic submissions is a challenging recommendation scenario. Recent graph learning-driven models have made remarkable progress in the field of recommendation, but their performance in the academic reviewer recommendation task may suffer from a significant false negative issue. This arises from the assumption that unobserved edges represent negative samples. In fact, the mechanism of anonymous review results in inadequate exposure of interactions between reviewers and submissions, leading to a higher number of unobserved interactions compared to those caused by reviewers declining to participate. Therefore, investigating how to better comprehend the negative labeling of unobserved interactions in academic reviewer recommendations is a significant challenge. This study aims to tackle the ambiguous nature of unobserved interactions in academic reviewer recommendations. Specifically, we propose an unsupervised Pseudo Neg-Label strategy to enhance graph contrastive learning (GCL) for recommending reviewers for academic submissions, which we call RevGNN. RevGNN utilizes a two-stage encoder structure that encodes both scientific knowledge and behavior using Pseudo Neg-Label to approximate review preference. Extensive experiments on three real-world datasets demonstrate that RevGNN outperforms all baselines across four metrics. Additionally, detailed further analyses confirm the effectiveness of each component in RevGNN.
RevGNN:用于学术评审人推荐的负采样增强型对比图学习
为学术论文获取审稿人是一个极具挑战性的推荐场景。最近的图学习驱动模型在推荐领域取得了显著进展,但它们在学术审稿人推荐任务中的表现可能存在严重的假否定问题。这是因为假设未观察到的边代表负样本。事实上,匿名评审机制会导致评审人与投稿之间的互动暴露不足,从而导致未观察到的互动数量高于评审人拒绝参与所导致的互动数量。因此,研究如何更好地理解学术审稿人推荐中未观察到的互动的负面标签是一项重大挑战。本研究旨在解决学术审稿人推荐中未观察到的互动的模糊性问题。具体来说,我们提出了一种无监督伪负标策略(Pseudo Neg-Label)来增强图对比学习(GCL),用于为学术论文推荐审稿人,我们称之为 RevGNN。RevGNN 采用两阶段编码器结构,利用伪负标对科学知识和行为进行编码,从而近似地确定审稿偏好。在三个真实世界数据集上进行的广泛实验表明,RevGNN 在四个指标上均优于所有基线。此外,详细的进一步分析证实了 RevGNN 中每个组件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Information Systems
ACM Transactions on Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
14.30%
发文量
165
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain: new principled information retrieval models or algorithms with sound empirical validation; observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking; accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques; formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks; development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking; development of computational models of user information preferences and interaction behaviors; creation and analysis of evaluation methodologies for information retrieval and information seeking; or surveys of existing work that propose a significant synthesis. The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信