Xiaoyan Hu, Prathyush P Menon, Christopher Edwards, Guilin Wen, Hanfeng Yin
{"title":"An adaptive approximation-free control for leader-follower tracking of multi-agent systems with unknown nonlinearity and disturbance","authors":"Xiaoyan Hu, Prathyush P Menon, Christopher Edwards, Guilin Wen, Hanfeng Yin","doi":"10.1049/cth2.12711","DOIUrl":null,"url":null,"abstract":"<p>Due to variable and complex work environments, nonlinearities, uncertainty and disturbances are inevitable in multi-agent systems. Approximation-free control can address these issues without involving approximators, such as fuzzy logic systems and neural networks. However, some issues like the singularity problem caused by the signals exceeding the preset boundary in changing work conditions still remain. This paper proposes an adaptive and reliable approximation-free control, which comprises a novel singularity compensator and a modified transforming function. The proposed control scheme performs better in terms of convergence rate and overshoot, avoids issues relating to singularity, and has added flexibility in terms of parameter choice. The proposed control law adapts to changes in operating conditions and nonlinearities—the efficacy of which is demonstrated using simulations.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 13","pages":"1638-1648"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12711","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12711","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to variable and complex work environments, nonlinearities, uncertainty and disturbances are inevitable in multi-agent systems. Approximation-free control can address these issues without involving approximators, such as fuzzy logic systems and neural networks. However, some issues like the singularity problem caused by the signals exceeding the preset boundary in changing work conditions still remain. This paper proposes an adaptive and reliable approximation-free control, which comprises a novel singularity compensator and a modified transforming function. The proposed control scheme performs better in terms of convergence rate and overshoot, avoids issues relating to singularity, and has added flexibility in terms of parameter choice. The proposed control law adapts to changes in operating conditions and nonlinearities—the efficacy of which is demonstrated using simulations.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.