Examining Hybrid Nanofluid Flow Dynamics in the Conical Gap between a Rotating Disk and Cone Surface: An Artificial Neural Network Approach

IF 3.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Julien Moussa H. Barakat, Z. Al Barakeh, Raymond Ghandour
{"title":"Examining Hybrid Nanofluid Flow Dynamics in the Conical Gap between a Rotating Disk and Cone Surface: An Artificial Neural Network Approach","authors":"Julien Moussa H. Barakat, Z. Al Barakeh, Raymond Ghandour","doi":"10.3390/asi7040063","DOIUrl":null,"url":null,"abstract":"To comprehend the thermal regulation within the conical gap between a disk and a cone (TRHNF-DC) for hybrid nanofluid flow, this research introduces a novel application of computationally intelligent heuristics utilizing backpropagated Levenberg–Marquardt neural networks (LM-NNs). A unique hybrid nanoliquid comprising aluminum oxide, Al2O3, nanoparticles and copper, Cu, nanoparticles is specifically addressed. Through the application of similarity transformations, the mathematical model formulated in terms of partial differential equations (PDEs) is converted into ordinary differential equations (ODEs). The BVP4C method is employed to generate a dataset encompassing various TRHNF-DC scenarios by varying magnetic parameters and nanoparticles. Subsequently, the intelligent LM-NN solver is trained, tested, and validated to ascertain the TRHNF-DC solution under diverse conditions. The accuracy of the LM-NN approach in solving the TRHNF-DC model is verified through different analyses, demonstrating a high level of accuracy, with discrepancies ranging from 10−10 to 10−8 when compared with standard solutions. The efficacy of the framework is further underscored by the close agreement of recommended outcomes with reference solutions, thereby validating its integrity.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi7040063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To comprehend the thermal regulation within the conical gap between a disk and a cone (TRHNF-DC) for hybrid nanofluid flow, this research introduces a novel application of computationally intelligent heuristics utilizing backpropagated Levenberg–Marquardt neural networks (LM-NNs). A unique hybrid nanoliquid comprising aluminum oxide, Al2O3, nanoparticles and copper, Cu, nanoparticles is specifically addressed. Through the application of similarity transformations, the mathematical model formulated in terms of partial differential equations (PDEs) is converted into ordinary differential equations (ODEs). The BVP4C method is employed to generate a dataset encompassing various TRHNF-DC scenarios by varying magnetic parameters and nanoparticles. Subsequently, the intelligent LM-NN solver is trained, tested, and validated to ascertain the TRHNF-DC solution under diverse conditions. The accuracy of the LM-NN approach in solving the TRHNF-DC model is verified through different analyses, demonstrating a high level of accuracy, with discrepancies ranging from 10−10 to 10−8 when compared with standard solutions. The efficacy of the framework is further underscored by the close agreement of recommended outcomes with reference solutions, thereby validating its integrity.
研究旋转盘与锥面之间锥形间隙中的混合纳米流体流动动力学:人工神经网络方法
为了理解混合纳米流体流动中圆盘和圆锥之间的锥形间隙(TRHNF-DC)内的热调节,本研究介绍了一种利用反向传播 Levenberg-Marquardt 神经网络(LM-NNs)的计算智能启发式新应用。本研究特别探讨了一种由纳米氧化铝(Al2O3)和纳米铜(Cu)组成的独特混合纳米液体。通过应用相似性变换,将偏微分方程(PDE)数学模型转换为常微分方程(ODE)。采用 BVP4C 方法,通过改变磁性参数和纳米粒子生成包含各种 TRHNF-DC 方案的数据集。随后,对智能 LM-NN 求解器进行训练、测试和验证,以确定不同条件下的 TRHNF-DC 解决方案。通过不同的分析验证了 LM-NN 方法在求解 TRHNF-DC 模型时的准确性,与标准解法相比,LM-NN 方法具有很高的准确性,差异范围在 10-10 到 10-8 之间。建议的结果与参考解决方案非常接近,从而验证了该框架的完整性,这进一步突出了该框架的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied System Innovation
Applied System Innovation Mathematics-Applied Mathematics
CiteScore
7.90
自引率
5.30%
发文量
102
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信