Building-Integrated Photovoltaics in Existing Buildings: A Novel PV Roofing System

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
C. Del Pero, F. Leonforte, N. Aste
{"title":"Building-Integrated Photovoltaics in Existing Buildings: A Novel PV Roofing System","authors":"C. Del Pero, F. Leonforte, N. Aste","doi":"10.3390/buildings14082270","DOIUrl":null,"url":null,"abstract":"Among renewable energy generation technologies, photovoltaics has a pivotal role in reaching the EU’s decarbonization goals. In particular, building-integrated photovoltaic (BIPV) systems are attracting increasing interest since they are a fundamental element that allows buildings to abate their CO2 emissions while also performing functions typical of traditional building components, such as sealing against water. In such a context, since one of the main challenges to decarbonizing the building sector lies in the retrofitting of existing buildings, the current paper is focused on the design, development, and testing of a novel roofing BIPV system. The entire research was carried out as part of the Horizon 2020 HEART project. In more detail, the research analyzed the requirements of typical pitched tile roofs, which are currently the most common type in Europe, and developed a universal photovoltaic tile that can be easily and quickly integrated into such a type of roof. The research was also aimed at minimizing the embodied energy of the component and promoting disassembly and recycling at the end of life, fully in line with a circular economy perspective. The adopted design and development processes are described in detail in the present paper, along with the results of several tests performed in the field. In addition, further development prospects of the component, aimed at meeting the integration requirements in historic buildings, are finally presented.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082270","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Among renewable energy generation technologies, photovoltaics has a pivotal role in reaching the EU’s decarbonization goals. In particular, building-integrated photovoltaic (BIPV) systems are attracting increasing interest since they are a fundamental element that allows buildings to abate their CO2 emissions while also performing functions typical of traditional building components, such as sealing against water. In such a context, since one of the main challenges to decarbonizing the building sector lies in the retrofitting of existing buildings, the current paper is focused on the design, development, and testing of a novel roofing BIPV system. The entire research was carried out as part of the Horizon 2020 HEART project. In more detail, the research analyzed the requirements of typical pitched tile roofs, which are currently the most common type in Europe, and developed a universal photovoltaic tile that can be easily and quickly integrated into such a type of roof. The research was also aimed at minimizing the embodied energy of the component and promoting disassembly and recycling at the end of life, fully in line with a circular economy perspective. The adopted design and development processes are described in detail in the present paper, along with the results of several tests performed in the field. In addition, further development prospects of the component, aimed at meeting the integration requirements in historic buildings, are finally presented.
现有建筑中的光伏建筑一体化:新型光伏屋顶系统
在可再生能源发电技术中,光伏技术在实现欧盟去碳化目标方面具有举足轻重的作用。尤其是光伏建筑一体化(BIPV)系统,由于它是建筑减少二氧化碳排放的基本要素,同时还具有传统建筑部件的典型功能,如防水密封等,因此正吸引着越来越多的关注。在此背景下,由于建筑行业去碳化的主要挑战之一在于现有建筑的改造,本论文重点关注新型屋顶 BIPV 系统的设计、开发和测试。整个研究是作为地平线 2020 HEART 项目的一部分进行的。更详细地说,研究分析了目前欧洲最常见的典型斜瓦屋顶的要求,并开发了一种通用光伏瓦,可以方便快捷地集成到这种屋顶中。这项研究还旨在最大限度地减少组件的内含能源,促进组件在使用寿命结束后的拆卸和回收利用,这完全符合循环经济的观点。本文详细介绍了所采用的设计和开发过程,以及在现场进行的若干测试结果。此外,最后还介绍了该组件的进一步发展前景,旨在满足历史建筑的集成要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信