N. Okazaki, Shotaro Usuzaki, Tsubasa Waki, Hyoga Kawagoe, Mirang Park, H. Yamaba, Kentaro Aburada
{"title":"Optimal Weighted Voting-Based Collaborated Malware Detection for Zero-Day Malware: A Case Study on VirusTotal and MalwareBazaar","authors":"N. Okazaki, Shotaro Usuzaki, Tsubasa Waki, Hyoga Kawagoe, Mirang Park, H. Yamaba, Kentaro Aburada","doi":"10.3390/fi16080259","DOIUrl":null,"url":null,"abstract":"We propose a detection system incorporating a weighted voting mechanism that reflects the vote’s reliability based on the accuracy of each detector’s examination, which overcomes the problem of cooperative detection. Collaborative malware detection is an effective strategy against zero-day attacks compared to one using only a single detector because the strategy might pick up attacks that a single detector overlooked. However, cooperative detection is still ineffective if most anti-virus engines lack sufficient intelligence to detect zero-day malware. Most collaborative methods rely on majority voting, which prioritizes the quantity of votes rather than the quality of those votes. Therefore, our study investigated the zero-day malware detection accuracy of the collaborative system that optimally rates their weight of votes based on their malware categories of expertise of each anti-virus engine. We implemented the prototype system with the VirusTotal API and evaluated the system using real malware registered in MalwareBazaar. To evaluate the effectiveness of zero-day malware detection, we measured recall using the inspection results on the same day the malware was registered in the MalwareBazaar repository. Through experiments, we confirmed that the proposed system can suppress the false negatives of uniformly weighted voting and improve detection accuracy against new types of malware.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"52 3","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16080259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a detection system incorporating a weighted voting mechanism that reflects the vote’s reliability based on the accuracy of each detector’s examination, which overcomes the problem of cooperative detection. Collaborative malware detection is an effective strategy against zero-day attacks compared to one using only a single detector because the strategy might pick up attacks that a single detector overlooked. However, cooperative detection is still ineffective if most anti-virus engines lack sufficient intelligence to detect zero-day malware. Most collaborative methods rely on majority voting, which prioritizes the quantity of votes rather than the quality of those votes. Therefore, our study investigated the zero-day malware detection accuracy of the collaborative system that optimally rates their weight of votes based on their malware categories of expertise of each anti-virus engine. We implemented the prototype system with the VirusTotal API and evaluated the system using real malware registered in MalwareBazaar. To evaluate the effectiveness of zero-day malware detection, we measured recall using the inspection results on the same day the malware was registered in the MalwareBazaar repository. Through experiments, we confirmed that the proposed system can suppress the false negatives of uniformly weighted voting and improve detection accuracy against new types of malware.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.