{"title":"e-Waste in construction: a comprehensive bibliometric analysis and review of the literature","authors":"Vineet Kumar, Deepak Kumar Verma","doi":"10.1108/wje-12-2023-0504","DOIUrl":null,"url":null,"abstract":"Purpose\nThe global construction industry faces both challenges and opportunities from electronic waste (e-waste). This study aims to present a bibliometric analysis and comprehensive literature assessment on e-waste in concrete construction materials.\n\nDesign/methodology/approach\nThis study studies 4,122 Scopus documents to examine garbage generation in different countries and inventive ways to integrate e-waste into construction as a sustainable strategy. This study lists famous researchers and their cooperation networks, demonstrating a robust and dynamic area with a surge in research output, notably from 2018 to 2022. Data is visually represented using VOS Viewer to show trends, patterns and study interests throughout time.\n\nFindings\nThe findings imply that e-waste can improve construction materials’ mechanical characteristics and sustainability. The results are inconsistent and suggest further optimization. e-Waste into construction has garnered scientific interest for its environmental, life cycle, and economic impacts. This field has great potential for improving e-waste material use, developing sophisticated prediction models, studying environmental implications, economic analysis, policy formulation, novel construction methods, global cooperation and public awareness. This study shows that e-waste can be used in sustainable building. It stresses this area’s need for research and innovation. This lays the groundwork for using electronic trash in buildings, which promotes a circular economy and environmental sustainability.\n\nResearch limitations/implications\nThe findings underscore the critical role of ongoing research and innovation in leveraging e-waste for sustainable building practices. This study lays the groundwork for integrating e-waste into construction, contributing to the advancement of a circular economy and environmental sustainability.\n\nSocial implications\nThe social implications of integrating e-waste into construction are significant. Using e-waste not only addresses environmental concerns but also promotes social sustainability by creating new job opportunities in the recycling and construction sectors. It fosters community awareness and responsibility towards sustainable practices and waste management. Additionally, this approach can reduce construction costs, making building projects more accessible and potentially lowering housing prices.\n\nOriginality/value\nThis research contributes to the field by offering a bibliometric analysis and comprehensive assessment of e-waste in concrete construction materials, highlighting its global significance.\n","PeriodicalId":509668,"journal":{"name":"World Journal of Engineering","volume":"125 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/wje-12-2023-0504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The global construction industry faces both challenges and opportunities from electronic waste (e-waste). This study aims to present a bibliometric analysis and comprehensive literature assessment on e-waste in concrete construction materials.
Design/methodology/approach
This study studies 4,122 Scopus documents to examine garbage generation in different countries and inventive ways to integrate e-waste into construction as a sustainable strategy. This study lists famous researchers and their cooperation networks, demonstrating a robust and dynamic area with a surge in research output, notably from 2018 to 2022. Data is visually represented using VOS Viewer to show trends, patterns and study interests throughout time.
Findings
The findings imply that e-waste can improve construction materials’ mechanical characteristics and sustainability. The results are inconsistent and suggest further optimization. e-Waste into construction has garnered scientific interest for its environmental, life cycle, and economic impacts. This field has great potential for improving e-waste material use, developing sophisticated prediction models, studying environmental implications, economic analysis, policy formulation, novel construction methods, global cooperation and public awareness. This study shows that e-waste can be used in sustainable building. It stresses this area’s need for research and innovation. This lays the groundwork for using electronic trash in buildings, which promotes a circular economy and environmental sustainability.
Research limitations/implications
The findings underscore the critical role of ongoing research and innovation in leveraging e-waste for sustainable building practices. This study lays the groundwork for integrating e-waste into construction, contributing to the advancement of a circular economy and environmental sustainability.
Social implications
The social implications of integrating e-waste into construction are significant. Using e-waste not only addresses environmental concerns but also promotes social sustainability by creating new job opportunities in the recycling and construction sectors. It fosters community awareness and responsibility towards sustainable practices and waste management. Additionally, this approach can reduce construction costs, making building projects more accessible and potentially lowering housing prices.
Originality/value
This research contributes to the field by offering a bibliometric analysis and comprehensive assessment of e-waste in concrete construction materials, highlighting its global significance.