Nuocheng Tian, Xiaoyong Hu, Kai Huang, Guolong Chen, Hongliang Kong
{"title":"Influence of Heat Treatment on the Mechanical Properties of Fine-Grained Granite under Dynamic Impact Loading","authors":"Nuocheng Tian, Xiaoyong Hu, Kai Huang, Guolong Chen, Hongliang Kong","doi":"10.3390/buildings14082272","DOIUrl":null,"url":null,"abstract":"In order to study the influence of heat treatment on the dynamic properties of fine-grained granite, an improved split Hopkinson pressure bar (SHPB) system was used to conduct impact compression tests on the granite specimens treated at 20~1000 °C under three loading rates. The experimental results show that the shape of the impact stress–strain curve is affected by the loading rate and heat treatment temperature. Under the same loading rate, the average strain rate, peak strain, and maximum strain of granite specimen exhibit a trend of “slow increasing (20~200 °C)—slow decreasing (200~400 °C)—slow increasing (400~500 °C)”. The peak stress and elastic modulus show the opposite trend. The average strain rate, peak strain, and maximum strain of the granite specimen treated at 600 °C increase significantly. The peak stress and elastic modulus decrease significantly. Within the heat treatment temperature range of 600~800 °C, the dynamic properties of granite deteriorate slowly. The average strain rate, peak strain, and maximum strain of the granite specimens treated at 900 °C and 1000 °C increase sharply, while the peak stress decreases sharply. Within the heat treatment temperature range of 600–1000 °C, the elastic modulus of the granite specimen shows an approximately linear decreasing trend. There are no changes in the mineral composition of granite within the heat treatment temperature range of 20–1000 °C. After heat treatment at 600 °C, the width of internal cracks in granite increases significantly. The width of internal cracks in the heat-treated granites at 900 °C and 1000 °C increases sharply. The change in the dynamic properties of granite is determined by the internal microstructure of the heat-treated granite at different temperatures.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082272","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to study the influence of heat treatment on the dynamic properties of fine-grained granite, an improved split Hopkinson pressure bar (SHPB) system was used to conduct impact compression tests on the granite specimens treated at 20~1000 °C under three loading rates. The experimental results show that the shape of the impact stress–strain curve is affected by the loading rate and heat treatment temperature. Under the same loading rate, the average strain rate, peak strain, and maximum strain of granite specimen exhibit a trend of “slow increasing (20~200 °C)—slow decreasing (200~400 °C)—slow increasing (400~500 °C)”. The peak stress and elastic modulus show the opposite trend. The average strain rate, peak strain, and maximum strain of the granite specimen treated at 600 °C increase significantly. The peak stress and elastic modulus decrease significantly. Within the heat treatment temperature range of 600~800 °C, the dynamic properties of granite deteriorate slowly. The average strain rate, peak strain, and maximum strain of the granite specimens treated at 900 °C and 1000 °C increase sharply, while the peak stress decreases sharply. Within the heat treatment temperature range of 600–1000 °C, the elastic modulus of the granite specimen shows an approximately linear decreasing trend. There are no changes in the mineral composition of granite within the heat treatment temperature range of 20–1000 °C. After heat treatment at 600 °C, the width of internal cracks in granite increases significantly. The width of internal cracks in the heat-treated granites at 900 °C and 1000 °C increases sharply. The change in the dynamic properties of granite is determined by the internal microstructure of the heat-treated granite at different temperatures.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates