{"title":"Heterogeneous Processes in Detoxification of Metal Ions","authors":"N. Skorik, O. A. Asochakov, A. A. Seregina","doi":"10.31857/s0044460x24020161","DOIUrl":null,"url":null,"abstract":"The conditions for the synthesis of sparingly soluble salts of lead, cadmium, mercury(II), copper(II) and iron(II, III) with anions of some organic acids HmL were given. Based on their solubility data (ionic strength I = 0.1), the solubility constants KS were calculated; based on the [Mn+]/MPCM ratio, conclusions were drawn about the applicability of low-toxic organic ligands as precipitators (antidotes) of toxic metal ions. It was shown that deactivation is also possible during the redox reaction of mercury(II), copper(II) with ascorbic acid. According to adsorption data on activated carbon, a number of ions were established to reduce sorption (deactivation ability): Pb2+ (96.6%), Fe3+ (95.4%), Hg2+ (80.6%), Cd2+ (42.4%). Adsorption data complemented the results of reagent methods for studying the detoxification of metal ions.","PeriodicalId":411386,"journal":{"name":"ЖУРНАЛ ОБЩЕЙ ХИМИИ","volume":"19 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ЖУРНАЛ ОБЩЕЙ ХИМИИ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/s0044460x24020161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The conditions for the synthesis of sparingly soluble salts of lead, cadmium, mercury(II), copper(II) and iron(II, III) with anions of some organic acids HmL were given. Based on their solubility data (ionic strength I = 0.1), the solubility constants KS were calculated; based on the [Mn+]/MPCM ratio, conclusions were drawn about the applicability of low-toxic organic ligands as precipitators (antidotes) of toxic metal ions. It was shown that deactivation is also possible during the redox reaction of mercury(II), copper(II) with ascorbic acid. According to adsorption data on activated carbon, a number of ions were established to reduce sorption (deactivation ability): Pb2+ (96.6%), Fe3+ (95.4%), Hg2+ (80.6%), Cd2+ (42.4%). Adsorption data complemented the results of reagent methods for studying the detoxification of metal ions.