S. Stojiljković, L. Gavrilović, S. Pejić, S. Pajović, M. Macura, Dragan Nikolic, S. Bubanj, V. Stojiljkovic
{"title":"Effects of Endurance Training on Antioxidant and Hormonal Status in Peripheral Blood of Young Healthy Men","authors":"S. Stojiljković, L. Gavrilović, S. Pejić, S. Pajović, M. Macura, Dragan Nikolic, S. Bubanj, V. Stojiljkovic","doi":"10.3390/life14080921","DOIUrl":null,"url":null,"abstract":"(1) Background: Physical activity may cause an imbalance in the major functions of the human body. This study aimed to investigate the effects of endurance running training on the parameters of the antioxidant defense system (SOD, CAT, GPx, GR, GSH), LPO (malondialdehyde, MDA), and stress hormones (A, NA) in young healthy, previously untrained men. (2) Methods: The training program was as follows: 8 weeks of running, three times per week; the duration of a single session was 30–70 min, the intensity was twice a week in the so-called extensive endurance zone, and once a week in the anaerobic threshold zone. Blood samples were collected from the subjects, before and after the running program. (3) Results: The training program resulted in a significant increase in maximal oxygen consumption (p < 0.001). The activities of SOD, GPx, and GR also increased significantly (p < 0.05, p < 0.01, and p < 0.05, respectively), while CAT activity and GSH and MDA concentrations remained unchanged. The concentration of A decreased (p < 0.05), while the NA concentration increased significantly (p < 0.05). SOD, GPx, GR, and NA positively correlated with VO2max (p < 0.05, p < 0.001, p < 0.01, p < 0.05, respectively), while a negative correlation was detected between A and VO2max (p < 0.05). (4) Conclusions: These results indicate that there is no persistent oxidative stress in response to the applied 8-week running program, probably due to exercise-induced protective alterations in the antioxidant defense system. Furthermore, adaptations occurred at the hormonal level, making the organism more ready for a new challenge.","PeriodicalId":18182,"journal":{"name":"Life","volume":"27 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/life14080921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
(1) Background: Physical activity may cause an imbalance in the major functions of the human body. This study aimed to investigate the effects of endurance running training on the parameters of the antioxidant defense system (SOD, CAT, GPx, GR, GSH), LPO (malondialdehyde, MDA), and stress hormones (A, NA) in young healthy, previously untrained men. (2) Methods: The training program was as follows: 8 weeks of running, three times per week; the duration of a single session was 30–70 min, the intensity was twice a week in the so-called extensive endurance zone, and once a week in the anaerobic threshold zone. Blood samples were collected from the subjects, before and after the running program. (3) Results: The training program resulted in a significant increase in maximal oxygen consumption (p < 0.001). The activities of SOD, GPx, and GR also increased significantly (p < 0.05, p < 0.01, and p < 0.05, respectively), while CAT activity and GSH and MDA concentrations remained unchanged. The concentration of A decreased (p < 0.05), while the NA concentration increased significantly (p < 0.05). SOD, GPx, GR, and NA positively correlated with VO2max (p < 0.05, p < 0.001, p < 0.01, p < 0.05, respectively), while a negative correlation was detected between A and VO2max (p < 0.05). (4) Conclusions: These results indicate that there is no persistent oxidative stress in response to the applied 8-week running program, probably due to exercise-induced protective alterations in the antioxidant defense system. Furthermore, adaptations occurred at the hormonal level, making the organism more ready for a new challenge.