A Numerical Investigation of the Influence of Diffuser Vane Height on Hydraulic Loss in the Volute for a Centrifugal Water Supply Pump

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Zhen Liu, Xiangyuan Zhu, Jiying Liu, Moon Keun Kim, Wei Jiang
{"title":"A Numerical Investigation of the Influence of Diffuser Vane Height on Hydraulic Loss in the Volute for a Centrifugal Water Supply Pump","authors":"Zhen Liu, Xiangyuan Zhu, Jiying Liu, Moon Keun Kim, Wei Jiang","doi":"10.3390/buildings14082296","DOIUrl":null,"url":null,"abstract":"The energy efficiency of water supply systems in high-rise residential buildings has become a significant concern for sustainable development in recent times. This work presents a numerical investigation on the influence of diffuser vane height on flow variation and hydraulic loss in the volute for a water supply centrifugal pump. Experiments and numerical simulations were conducted with four different vane height ratios. The numerical results were validated against experimental data. The hydraulic losses of different flow components were numerically evaluated at varying guide vane blade heights. The changes in flow patterns within the volute and the resulting discrepancies in hydraulic losses due to variations in the inlet flow conditions at different blade heights were studied. The findings indicate that the total pressure drop within the volute is affected significantly. Compared to traditional guide vanes, the reduced height vanes can reduce the hydraulic loss in the volute by nearly 75%. Once the vane height is reduced, the high-pressure gradient is improved, and the small-scale vortex vanishes. The influence area of the large-scale vortex in the volute outlet pipe decreases, leading to a weakening of the deflection of the main flow and ultimately resulting in reduced hydraulic loss.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082296","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The energy efficiency of water supply systems in high-rise residential buildings has become a significant concern for sustainable development in recent times. This work presents a numerical investigation on the influence of diffuser vane height on flow variation and hydraulic loss in the volute for a water supply centrifugal pump. Experiments and numerical simulations were conducted with four different vane height ratios. The numerical results were validated against experimental data. The hydraulic losses of different flow components were numerically evaluated at varying guide vane blade heights. The changes in flow patterns within the volute and the resulting discrepancies in hydraulic losses due to variations in the inlet flow conditions at different blade heights were studied. The findings indicate that the total pressure drop within the volute is affected significantly. Compared to traditional guide vanes, the reduced height vanes can reduce the hydraulic loss in the volute by nearly 75%. Once the vane height is reduced, the high-pressure gradient is improved, and the small-scale vortex vanishes. The influence area of the large-scale vortex in the volute outlet pipe decreases, leading to a weakening of the deflection of the main flow and ultimately resulting in reduced hydraulic loss.
扩散器叶片高度对离心供水泵涡流中水力损失影响的数值研究
近年来,高层住宅供水系统的能效已成为可持续发展的一个重要问题。本研究采用数值方法研究了扩散器叶片高度对供水离心泵涡流中流量变化和水力损失的影响。采用四种不同的叶片高度比进行了实验和数值模拟。数值结果与实验数据进行了验证。对不同导叶高度下不同流动成分的水力损失进行了数值评估。研究了在不同叶片高度下,涡流内部流动模式的变化,以及由于入口流动条件的变化而导致的水力损失差异。研究结果表明,涡流内的总压降受到很大影响。与传统的导向叶片相比,高度降低的叶片可将涡流中的水力损失减少近 75%。叶片高度降低后,高压梯度得到改善,小规模涡旋消失。涡流出口管道中大尺度涡流的影响面积减小,从而减弱了主流的偏转,最终减少了水力损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信