Research on the Performance and Computational Fluid Dynamics Numerical Simulation of Plate Air Gap Membrane Distillation Module

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Haojie Bi, Hongying Yuan, Zhiyuan Xu, Zhuobin Liang, Yongliang Du
{"title":"Research on the Performance and Computational Fluid Dynamics Numerical Simulation of Plate Air Gap Membrane Distillation Module","authors":"Haojie Bi, Hongying Yuan, Zhiyuan Xu, Zhuobin Liang, Yongliang Du","doi":"10.3390/membranes14080162","DOIUrl":null,"url":null,"abstract":"Membrane distillation (MD) is widely used in the field of seawater desalination. Among its various sub-categories, air gap membrane distillation (AGMD) stands out due to its high thermal efficiency and compatibility with low-grade heat sources. This study delves into the impact of varying operating conditions on AGMD performance, employing numerical simulations which are grounded in experimental validation. The objective was to enhance the performance of AGMD, mitigate polarization phenomena, and provide a reference for optimizing membrane component design. The results show that the agreements between the simulated and the experimental values were high. When increasing the feed temperature and decreasing the coolant temperature, the impact of polarization phenomena on the performance of AGMD was reduced. The mass flux, Total Permeate Concentration (TPC), and heat flux increased by 81.69%, 36.89%, and 118.01%, respectively, when the feed temperature was increased from 50 °C to 75 °C. When the coolant temperature decreased from 22 °C to 7 °C, the mass flux increased by 37.06%. The response surface analysis revealed that the feed temperature has significant influence on AGMD performance, and there is a noticeable interaction between the feed temperature and coolant temperature. These findings will play key roles in practical applications.","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14080162","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane distillation (MD) is widely used in the field of seawater desalination. Among its various sub-categories, air gap membrane distillation (AGMD) stands out due to its high thermal efficiency and compatibility with low-grade heat sources. This study delves into the impact of varying operating conditions on AGMD performance, employing numerical simulations which are grounded in experimental validation. The objective was to enhance the performance of AGMD, mitigate polarization phenomena, and provide a reference for optimizing membrane component design. The results show that the agreements between the simulated and the experimental values were high. When increasing the feed temperature and decreasing the coolant temperature, the impact of polarization phenomena on the performance of AGMD was reduced. The mass flux, Total Permeate Concentration (TPC), and heat flux increased by 81.69%, 36.89%, and 118.01%, respectively, when the feed temperature was increased from 50 °C to 75 °C. When the coolant temperature decreased from 22 °C to 7 °C, the mass flux increased by 37.06%. The response surface analysis revealed that the feed temperature has significant influence on AGMD performance, and there is a noticeable interaction between the feed temperature and coolant temperature. These findings will play key roles in practical applications.
板式气隙膜蒸馏组件的性能与计算流体力学数值模拟研究
膜蒸馏(MD)广泛应用于海水淡化领域。在其各个子类别中,气隙膜蒸馏(AGMD)因其热效率高且与低品位热源兼容而脱颖而出。本研究通过以实验验证为基础的数值模拟,深入探讨了不同操作条件对 AGMD 性能的影响。目的是提高 AGMD 的性能,缓解极化现象,并为优化膜组件设计提供参考。结果表明,模拟值与实验值的一致性很高。当提高进料温度和降低冷却剂温度时,极化现象对 AGMD 性能的影响减小。当进料温度从 50 °C 升至 75 °C 时,质量通量、总渗透浓度(TPC)和热通量分别增加了 81.69%、36.89% 和 118.01%。当冷却剂温度从 22 °C 降至 7 °C 时,质量通量增加了 37.06%。响应面分析表明,进料温度对 AGMD 性能有显著影响,而且进料温度与冷却剂温度之间存在明显的交互作用。这些发现将在实际应用中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信