{"title":"Magnetic Substrates for Tissue Engineering—A Review","authors":"T. Błachowicz, Andrea Ehrmann","doi":"10.3390/magnetochemistry10080052","DOIUrl":null,"url":null,"abstract":"Tissue engineering is based on combining cells with suitable scaffolds and growth factors. Recently, bone tissue engineering has been especially investigated deeply due to a large number of bone-related diseases. One approach to improve scaffolds is based on using piezoelectric materials as a way to influence the growing bone tissue by mechanical stress. Another method to stimulate tissue growth is by applying an external magnetic field to composites of magnetostrictive and piezoelectric materials, as well as the possibility to prepare oriented surfaces by orienting embedded magnetic fibers or nanoparticles. In addition, magnetic scaffolds without other special properties have also been reported to show improved properties for bone tissue and other tissue engineering. Here, we provide an overview of recent research on magnetic scaffolds for tissue engineering, differentiating between bone and other tissue engineering. We show the advantages of magnetic scaffolds, especially related to cell guidance and differentiation, and report recent progress in the production and application of such magnetic substrates for different areas of tissue engineering.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"7 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry10080052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue engineering is based on combining cells with suitable scaffolds and growth factors. Recently, bone tissue engineering has been especially investigated deeply due to a large number of bone-related diseases. One approach to improve scaffolds is based on using piezoelectric materials as a way to influence the growing bone tissue by mechanical stress. Another method to stimulate tissue growth is by applying an external magnetic field to composites of magnetostrictive and piezoelectric materials, as well as the possibility to prepare oriented surfaces by orienting embedded magnetic fibers or nanoparticles. In addition, magnetic scaffolds without other special properties have also been reported to show improved properties for bone tissue and other tissue engineering. Here, we provide an overview of recent research on magnetic scaffolds for tissue engineering, differentiating between bone and other tissue engineering. We show the advantages of magnetic scaffolds, especially related to cell guidance and differentiation, and report recent progress in the production and application of such magnetic substrates for different areas of tissue engineering.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.