Development of a Method for Diagnosing Faults in Hydraulic Systems Using Artificial Neural Networks with Deep Learning

Hugo Mera, Félix García, Edisson Calderón
{"title":"Development of a Method for Diagnosing Faults in Hydraulic Systems Using Artificial Neural Networks with Deep Learning","authors":"Hugo Mera, Félix García, Edisson Calderón","doi":"10.18502/espoch.v3i3.16614","DOIUrl":null,"url":null,"abstract":"The application of artificial intelligence is a recent improvement in the industry, allowing preventive maintenance to be applied as a reliability method for detecting failures in hydraulic systems. This is achieved by using artificial neural networks (ANN) as classifiers to make automatic binary and categorical decisions. Since these systems have multiple conditions and sub-conditions that can be complex for normal analysis, the UCI repository database is relied upon to construct an intelligent algorithm of artificial neural networks with deep learning. This has proven to be a highly effective way of predicting failures, with an overall accuracy rate of 97% when applying the intelligent model to the system. As a result, it can be concluded that deep learning is much more efficient than classical machine learning. \nKeywords: artificial intelligence, predictive maintenance, artificial neural networks, deep learning. \nResumen \nLa aplicación de la inteligencia artificial es la nueva mejora en la industria, permitiendo que el mantenimiento preventivo se aplique como método de confiabilidad para la detección de fallos en sistemas hidráulicos aplicando Redes neuronales artificiales (ANN), utilizándoles como clasificadores para obtener una toma de decisiones automáticas de manera binaria y categórica, ya que dichos sistemas poseen varias condiciones y subcondiciones que se vuelven complejas para un análisis normal, apoyándose en la base de datos del repositorio de la UCI, siendo analizados para la construcción de un algoritmo inteligente de redes neuronales artificiales con Deep Learning (aprendizaje profundo), demostrando así un alto desenvolvimiento en la predicción de fallos, obteniéndose un 97% de exactitud (accuracy) de manera general en la aplicación del modelo inteligente al sistema. Se concluye que la aplicación del aprendizaje profundo es mucho más eficiente comparado con el aprendizaje automático clásico. \nPalabras Clave: Inteligencia artificial, mantenimiento predictivo, Redes Neuronales Artificiales, Aprendizaje profundo.","PeriodicalId":11737,"journal":{"name":"ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/espoch.v3i3.16614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of artificial intelligence is a recent improvement in the industry, allowing preventive maintenance to be applied as a reliability method for detecting failures in hydraulic systems. This is achieved by using artificial neural networks (ANN) as classifiers to make automatic binary and categorical decisions. Since these systems have multiple conditions and sub-conditions that can be complex for normal analysis, the UCI repository database is relied upon to construct an intelligent algorithm of artificial neural networks with deep learning. This has proven to be a highly effective way of predicting failures, with an overall accuracy rate of 97% when applying the intelligent model to the system. As a result, it can be concluded that deep learning is much more efficient than classical machine learning. Keywords: artificial intelligence, predictive maintenance, artificial neural networks, deep learning. Resumen La aplicación de la inteligencia artificial es la nueva mejora en la industria, permitiendo que el mantenimiento preventivo se aplique como método de confiabilidad para la detección de fallos en sistemas hidráulicos aplicando Redes neuronales artificiales (ANN), utilizándoles como clasificadores para obtener una toma de decisiones automáticas de manera binaria y categórica, ya que dichos sistemas poseen varias condiciones y subcondiciones que se vuelven complejas para un análisis normal, apoyándose en la base de datos del repositorio de la UCI, siendo analizados para la construcción de un algoritmo inteligente de redes neuronales artificiales con Deep Learning (aprendizaje profundo), demostrando así un alto desenvolvimiento en la predicción de fallos, obteniéndose un 97% de exactitud (accuracy) de manera general en la aplicación del modelo inteligente al sistema. Se concluye que la aplicación del aprendizaje profundo es mucho más eficiente comparado con el aprendizaje automático clásico. Palabras Clave: Inteligencia artificial, mantenimiento predictivo, Redes Neuronales Artificiales, Aprendizaje profundo.
利用深度学习人工神经网络开发液压系统故障诊断方法
人工智能的应用是工业领域最近的一项进步,它使预防性维护成为一种检测液压系统故障的可靠性方法。这是通过使用人工神经网络(ANN)作为分类器,自动做出二进制和分类决策来实现的。由于这些系统具有多种条件和子条件,对正常分析而言可能很复杂,因此依靠 UCI 储存库数据库来构建具有深度学习功能的人工神经网络智能算法。事实证明,这是一种预测故障的高效方法,将智能模型应用于系统时,总体准确率高达 97%。因此,可以得出这样的结论:深度学习比经典的机器学习更有效。关键词:人工智能;预测性维护;人工神经网络;深度学习。摘要 人工智能的应用是工业领域的新进步,通过应用人工神经网络(ANN),将其作为分类器,以二进制和分类的方式获得自动决策,从而将预防性维护作为检测液压系统故障的可靠性方法、由于这些系统有多个条件和子条件,对于正常分析而言变得复杂,因此依靠 UCI 储存库的数据库,分析构建深度学习的人工神经网络智能算法,从而在故障预测方面表现出高性能,在系统应用智能模型的一般情况下获得 97% 的准确率(精确度)。结论是,与经典的机器学习相比,深度学习的应用效率要高得多。关键词: 人工智能、预测性维护、人工神经网络、深度学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信