{"title":"Acoustic emission monitoring of composite marine propellers in submerged conditions using embedded piezoelectric sensors","authors":"Arnaud Huijer, Christos Kassapoglou, L. Pahlavan","doi":"10.1088/1361-665x/ad6739","DOIUrl":null,"url":null,"abstract":"\n Flexible composite marine propellers can aid the marine industry in reducing carbon emissions and underwater radiated noise pollution. The structural integrity of the blades can be assessed using structural health monitoring. One of these methods is the measurement and analysis of damage-induced acoustic emission signals. This paper experimentally investigates the feasibility of using embedded piezoelectric sensors for the measurement of acoustic emissions throughout a submerged flexible composite marine propeller blade. A full-scale glass-fibre reinforced polymer blade has been manufactured with 24 embedded sensors. While suspended in artificial seawater, acoustic emissions were simulated on the blade. The measurements show that the embedded piezoelectric sensors can measure acoustic emissions while the blade is submerged. Further, the distance from source to sensor over which the acoustic emission is measurable was investigated. For a noise level of 40dB and a source amplitude of 70dB between 100-250kHz, an average maximum measurable distance of 124mm was obtained. For higher frequencies, the distance drops and for lower noise levels the distance increases.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad6739","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible composite marine propellers can aid the marine industry in reducing carbon emissions and underwater radiated noise pollution. The structural integrity of the blades can be assessed using structural health monitoring. One of these methods is the measurement and analysis of damage-induced acoustic emission signals. This paper experimentally investigates the feasibility of using embedded piezoelectric sensors for the measurement of acoustic emissions throughout a submerged flexible composite marine propeller blade. A full-scale glass-fibre reinforced polymer blade has been manufactured with 24 embedded sensors. While suspended in artificial seawater, acoustic emissions were simulated on the blade. The measurements show that the embedded piezoelectric sensors can measure acoustic emissions while the blade is submerged. Further, the distance from source to sensor over which the acoustic emission is measurable was investigated. For a noise level of 40dB and a source amplitude of 70dB between 100-250kHz, an average maximum measurable distance of 124mm was obtained. For higher frequencies, the distance drops and for lower noise levels the distance increases.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.