M. Polis, A. Stolarczyk, Konrad Szydło, Barbara Lisiecka, M. Procek, S. Sławski, Tomasz Gołofit, Łukasz Hawelek, Tomasz Jarosz
{"title":"Novel NSTEX System Based on Ti/CuO/NC Nanothermite Doped with NTO","authors":"M. Polis, A. Stolarczyk, Konrad Szydło, Barbara Lisiecka, M. Procek, S. Sławski, Tomasz Gołofit, Łukasz Hawelek, Tomasz Jarosz","doi":"10.3390/en17153675","DOIUrl":null,"url":null,"abstract":"Modern energetic materials (EMs), e.g., nanothermite and NSTEX (Nanostructured Thermites and Explosive) compositions are attracting increasing research interest. In this work, we present the results of our investigation on the properties of a novel Ti/CuO nanothermite system doped with cellulose nitrate (NC) and 5-Nitro-1,2-dihydro-3H-1,2,4-triazin-3-one (NTO). In terms of safety parameters, the friction 40–>360 N), impact (40–>50 J) and laser irradiation sensitivity were determined for tested systems, which indicated tunable properties. The combustion velocity (up to 735 m/s), pressure parameters for combustion in closed vessel, thrust parameters and open-air combustion behaviour were measured. Moreover, in order to deeply study the impact of NTO on the combustion mechanism, the SEM, DSC/TG and XRD tests were performed. The obtained results indicate that the Ti/CuO/NC/NTO system is extremely promising for future applications.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153675","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Modern energetic materials (EMs), e.g., nanothermite and NSTEX (Nanostructured Thermites and Explosive) compositions are attracting increasing research interest. In this work, we present the results of our investigation on the properties of a novel Ti/CuO nanothermite system doped with cellulose nitrate (NC) and 5-Nitro-1,2-dihydro-3H-1,2,4-triazin-3-one (NTO). In terms of safety parameters, the friction 40–>360 N), impact (40–>50 J) and laser irradiation sensitivity were determined for tested systems, which indicated tunable properties. The combustion velocity (up to 735 m/s), pressure parameters for combustion in closed vessel, thrust parameters and open-air combustion behaviour were measured. Moreover, in order to deeply study the impact of NTO on the combustion mechanism, the SEM, DSC/TG and XRD tests were performed. The obtained results indicate that the Ti/CuO/NC/NTO system is extremely promising for future applications.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.