{"title":"Active Queue Management in L4S with Asynchronous Advantage Actor-Critic: A FreeBSD Networking Stack Perspective","authors":"Deol Satish, Jonathan Kua, Shiva Raj Pokhrel","doi":"10.3390/fi16080265","DOIUrl":null,"url":null,"abstract":"Bufferbloat is one of the leading causes of high data transmission latency and jitter on the Internet, which severely impacts the performance of low-latency interactive applications such as online streaming, cloud-based gaming/applications, Internet of Things (IoT) applications, voice over IP (VoIP), real-time video conferencing, and so forth. There is currently a pressing need for developing Transmission Control Protocol (TCP) congestion control algorithms and bottleneck queue management schemes that can collaboratively control/reduce end-to-end latency, thus ensuring optimal quality of service (QoS) and quality of experience (QoE) for users. This paper introduces a novel solution by experimentally integrate the low latency, low loss, and scalable throughput (L4S) architecture (specified by the IETF in RFC 9330) in FreeBSD framework with the asynchronous advantage actor-critic (A3C) reinforcement learning algorithm. The first phase involves incorporating a modified dual-queue coupled active queue management (AQM) system for L4S into the FreeBSD networking stack, enhancing queue management and mitigating latency and packet loss. The second phase employs A3C to adjust and fine-tune the system performance dynamically. Finally, we evaluate the proposed solution’s effectiveness through comprehensive experiments, comparing it with traditional AQM-based systems. This paper contributes to the advancement of machine learning (ML) for transport protocol research in the field. The experimental implementation and results presented in this paper are made available through our GitHub repositories.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16080265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Bufferbloat is one of the leading causes of high data transmission latency and jitter on the Internet, which severely impacts the performance of low-latency interactive applications such as online streaming, cloud-based gaming/applications, Internet of Things (IoT) applications, voice over IP (VoIP), real-time video conferencing, and so forth. There is currently a pressing need for developing Transmission Control Protocol (TCP) congestion control algorithms and bottleneck queue management schemes that can collaboratively control/reduce end-to-end latency, thus ensuring optimal quality of service (QoS) and quality of experience (QoE) for users. This paper introduces a novel solution by experimentally integrate the low latency, low loss, and scalable throughput (L4S) architecture (specified by the IETF in RFC 9330) in FreeBSD framework with the asynchronous advantage actor-critic (A3C) reinforcement learning algorithm. The first phase involves incorporating a modified dual-queue coupled active queue management (AQM) system for L4S into the FreeBSD networking stack, enhancing queue management and mitigating latency and packet loss. The second phase employs A3C to adjust and fine-tune the system performance dynamically. Finally, we evaluate the proposed solution’s effectiveness through comprehensive experiments, comparing it with traditional AQM-based systems. This paper contributes to the advancement of machine learning (ML) for transport protocol research in the field. The experimental implementation and results presented in this paper are made available through our GitHub repositories.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.