Zhenchao Qi, Tao Zhong, Jie Yang, Fuzhen Yu, Chenxi Yao
{"title":"Effects of bolt preload relaxation on the mechanical performance of composite structures","authors":"Zhenchao Qi, Tao Zhong, Jie Yang, Fuzhen Yu, Chenxi Yao","doi":"10.1177/09544054241260082","DOIUrl":null,"url":null,"abstract":"The durability of bolted composite joints has long been a significant concern within the field. However, the specific influence of transverse vibration relaxation on bolted composite joints has not been extensively studied. This study aims to investigate the effects of transverse vibration relaxation on bolted composite joints. A series of transverse vibration experiments were conducted to investigate the effect of initial preload, displacement load, and lubrication position on bolt preload relaxation. Additionally, tensile tests were performed on composite joints after relaxation and without relaxation to evaluate mechanical properties quantitatively. A finite element model was established to reveal the mechanism of damage evolution. The results indicate that displacement load and thread lubrication have the most significant influence on bolt preload relaxation. The clamping force of the composite structure generated by the smaller preload force has a limited effect on damage suppression during the tensile process. The relaxation of bolt preload can be effectively reduced by increasing the initial preload properly. The tensile strength of composite laminated structures with 10%, 22%, and 32% relaxation (10.4 kN initial preload) decreased by 5%, 6%, and 11%, respectively. Transverse vibration relaxation affects the tensile strength of composite structures, which is caused by the decay of preload. In contrast, the damage to the hole wall of the connection domain caused by transverse vibration almost does not affect the bearing capacity of the composite joints. Overall, this research contributes to the understanding of bolted composite joints’ durability by uncovering the novel effects of transverse vibration relaxation and providing valuable insights for design and optimization strategies in composite joint applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"9 12","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241260082","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The durability of bolted composite joints has long been a significant concern within the field. However, the specific influence of transverse vibration relaxation on bolted composite joints has not been extensively studied. This study aims to investigate the effects of transverse vibration relaxation on bolted composite joints. A series of transverse vibration experiments were conducted to investigate the effect of initial preload, displacement load, and lubrication position on bolt preload relaxation. Additionally, tensile tests were performed on composite joints after relaxation and without relaxation to evaluate mechanical properties quantitatively. A finite element model was established to reveal the mechanism of damage evolution. The results indicate that displacement load and thread lubrication have the most significant influence on bolt preload relaxation. The clamping force of the composite structure generated by the smaller preload force has a limited effect on damage suppression during the tensile process. The relaxation of bolt preload can be effectively reduced by increasing the initial preload properly. The tensile strength of composite laminated structures with 10%, 22%, and 32% relaxation (10.4 kN initial preload) decreased by 5%, 6%, and 11%, respectively. Transverse vibration relaxation affects the tensile strength of composite structures, which is caused by the decay of preload. In contrast, the damage to the hole wall of the connection domain caused by transverse vibration almost does not affect the bearing capacity of the composite joints. Overall, this research contributes to the understanding of bolted composite joints’ durability by uncovering the novel effects of transverse vibration relaxation and providing valuable insights for design and optimization strategies in composite joint applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.