Differences in tissue-Level Properties as Assessed by Nano-Scratching in Patients With and Without Atypical Femur Fractures on Long-Term Bisphosphonate Therapy: A Proof-of-Concept Pilot Study
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Gabriella Johnson, Lanny V Griffin, Shijing Qiu, S. Rao
{"title":"Differences in tissue-Level Properties as Assessed by Nano-Scratching in Patients With and Without Atypical Femur Fractures on Long-Term Bisphosphonate Therapy: A Proof-of-Concept Pilot Study","authors":"Gabriella Johnson, Lanny V Griffin, Shijing Qiu, S. Rao","doi":"10.1093/jbmrpl/ziae097","DOIUrl":null,"url":null,"abstract":"\n Atypical femur fractures (AFF) are a well-established complication of long-term bisphosphonate (BP) therapy, but their pathogenesis is not fully understood. Although many patients on long-term BP therapy have severe suppression of bone turnover (SSBT), not all such patients AFF even though SSBT is a major contributor to AFF. Accordingly, we evaluated tissue level properties using nano-scratch testing of trans-iliac bone biopsy specimens in 12 women (6 with and 6 without AFF matched for age and race). Nano-scratch data were analyzed using a mixed model ANOVA with volume normalized scratch energy as a function of AFF (Yes or No), region (periosteal or endosteal), and a first-order interaction between region and AFF. Tukey Post-hoc analyses of the differences of least squared means of scratch energy were performed and reported as significant if P<.05. The volume normalized scratch energy was 10.6% higher in AFF than in non-AFF patients (P=.003) and 17.9 % higher in the periosteal than in the endosteal region (P=.004). The differences in normalized scratch energy are consistent with a higher hardness of the bone tissue after long-term BP therapy. The results of this study are consistent with other studies in the literature and demonstrate the efficacy of using Nano-Scratch technique to evaluate bone tissue that exhibits SSBT and AFF. Further studies using nano-scratch may help quantify and elucidate underlying mechanisms for the pathogenesis of AFF.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"53 20","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jbmrpl/ziae097","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Atypical femur fractures (AFF) are a well-established complication of long-term bisphosphonate (BP) therapy, but their pathogenesis is not fully understood. Although many patients on long-term BP therapy have severe suppression of bone turnover (SSBT), not all such patients AFF even though SSBT is a major contributor to AFF. Accordingly, we evaluated tissue level properties using nano-scratch testing of trans-iliac bone biopsy specimens in 12 women (6 with and 6 without AFF matched for age and race). Nano-scratch data were analyzed using a mixed model ANOVA with volume normalized scratch energy as a function of AFF (Yes or No), region (periosteal or endosteal), and a first-order interaction between region and AFF. Tukey Post-hoc analyses of the differences of least squared means of scratch energy were performed and reported as significant if P<.05. The volume normalized scratch energy was 10.6% higher in AFF than in non-AFF patients (P=.003) and 17.9 % higher in the periosteal than in the endosteal region (P=.004). The differences in normalized scratch energy are consistent with a higher hardness of the bone tissue after long-term BP therapy. The results of this study are consistent with other studies in the literature and demonstrate the efficacy of using Nano-Scratch technique to evaluate bone tissue that exhibits SSBT and AFF. Further studies using nano-scratch may help quantify and elucidate underlying mechanisms for the pathogenesis of AFF.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico