Reza Derakhshani, L. Lankof, Amin GhasemiNejad, Alireza Zarasvandi, Mohammad Mahdi Amani Zarin, M. Zaresefat
{"title":"A Novel Sustainable Approach for Site Selection of Underground Hydrogen Storage in Poland Using Deep Learning","authors":"Reza Derakhshani, L. Lankof, Amin GhasemiNejad, Alireza Zarasvandi, Mohammad Mahdi Amani Zarin, M. Zaresefat","doi":"10.3390/en17153677","DOIUrl":null,"url":null,"abstract":"This research investigates the potential of using bedded salt formations for underground hydrogen storage. We present a novel artificial intelligence framework that employs spatial data analysis and multi-criteria decision-making to pinpoint the most appropriate sites for hydrogen storage in salt caverns. This methodology incorporates a comprehensive platform enhanced by a deep learning algorithm, specifically a convolutional neural network (CNN), to generate suitability maps for rock salt deposits for hydrogen storage. The efficacy of the CNN algorithm was assessed using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE), and the Correlation Coefficient (R2), with comparisons made to a real-world dataset. The CNN model showed outstanding performance, with an R2 of 0.96, MSE of 1.97, MAE of 1.003, and RMSE of 1.4. This novel approach leverages advanced deep learning techniques to offer a unique framework for assessing the viability of underground hydrogen storage. It presents a significant advancement in the field, offering valuable insights for a wide range of stakeholders and facilitating the identification of ideal sites for hydrogen storage facilities, thereby supporting informed decision-making and sustainable energy infrastructure development.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"18 8","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153677","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This research investigates the potential of using bedded salt formations for underground hydrogen storage. We present a novel artificial intelligence framework that employs spatial data analysis and multi-criteria decision-making to pinpoint the most appropriate sites for hydrogen storage in salt caverns. This methodology incorporates a comprehensive platform enhanced by a deep learning algorithm, specifically a convolutional neural network (CNN), to generate suitability maps for rock salt deposits for hydrogen storage. The efficacy of the CNN algorithm was assessed using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE), and the Correlation Coefficient (R2), with comparisons made to a real-world dataset. The CNN model showed outstanding performance, with an R2 of 0.96, MSE of 1.97, MAE of 1.003, and RMSE of 1.4. This novel approach leverages advanced deep learning techniques to offer a unique framework for assessing the viability of underground hydrogen storage. It presents a significant advancement in the field, offering valuable insights for a wide range of stakeholders and facilitating the identification of ideal sites for hydrogen storage facilities, thereby supporting informed decision-making and sustainable energy infrastructure development.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico