Accuracy Improvement in the LA-MC-ICP-MS Measurement of 87Sr/86Sr in Bioapatite Using Dentin of Carcharinus leucas (Bull shark) to Estimate 87Rb/85Rb Instrument Induced Fractionation
Julio C. Chávez-Ambriz, Juan Pablo Bernal, Bodo Weber, Carlos Ortega-Obregón, Liliana Corona-Martínez, Óscar Carranza-Castañeda
{"title":"Accuracy Improvement in the LA-MC-ICP-MS Measurement of 87Sr/86Sr in Bioapatite Using Dentin of Carcharinus leucas (Bull shark) to Estimate 87Rb/85Rb Instrument Induced Fractionation","authors":"Julio C. Chávez-Ambriz, Juan Pablo Bernal, Bodo Weber, Carlos Ortega-Obregón, Liliana Corona-Martínez, Óscar Carranza-Castañeda","doi":"10.1111/ggr.12576","DOIUrl":null,"url":null,"abstract":"<p><i>In situ</i> <sup>87</sup>Sr/<sup>86</sup>Sr microanalysis in bioapatite using laser ablation (LA-)MC-ICP-MS is an essential tool for provenance studies, as enamel tissue build-up records the regional Sr isotopic composition of ingested food and water sources. Several factors hamper the acquisition of reliable and precise <sup>87</sup>Sr/<sup>86</sup>Sr data: isobaric interferences, elemental and isotopic fractionation of Rb and Sr, and the lack of certified reference materials. Here we thoroughly characterise several teeth from <i>Carcharinus leucas</i> (Bull shark) for the spatial distribution of Sr and Rb mass fraction by LA-ICP-Q-MS, and their <sup>87</sup>Sr/<sup>86</sup>Sr ratio by solution MC-ICP-MS, MC-TIMS and LA-MC-ICP-MS, and which were used subsequently as a reference material during laser ablation measurement of Sr isotope ratios in bioapatite. We establish a protocol to estimate the <sup>85</sup>Rb/<sup>87</sup>Rb mass bias from the analysis of shark teeth that demonstrates that the common assumption of equal Sr and Rb instrument induced fractionation can lead to a systematic bias in <sup>87</sup>Sr/<sup>86</sup>Sr isotope ratios. Using the shark teeth as an \"external\" reference material to measure β<sub>Rb</sub> yielded <sup>87</sup>Sr/<sup>86</sup>Sr compositions in unknown samples that are within approximately -42 ppm to +66 ppm of expected values, instead of approximately -50 ppm to +190 ppm if assuming β<sub>Rb</sub> = β<sub>Sr</sub>. Finally, this methodology was tested on fossil gomphotherid (<i>Rhynchotherium sp.)</i> enamel, allowing us to make preliminary inferences about its palaeobiogeography.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"48 3","pages":"595-612"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12576","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12576","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In situ87Sr/86Sr microanalysis in bioapatite using laser ablation (LA-)MC-ICP-MS is an essential tool for provenance studies, as enamel tissue build-up records the regional Sr isotopic composition of ingested food and water sources. Several factors hamper the acquisition of reliable and precise 87Sr/86Sr data: isobaric interferences, elemental and isotopic fractionation of Rb and Sr, and the lack of certified reference materials. Here we thoroughly characterise several teeth from Carcharinus leucas (Bull shark) for the spatial distribution of Sr and Rb mass fraction by LA-ICP-Q-MS, and their 87Sr/86Sr ratio by solution MC-ICP-MS, MC-TIMS and LA-MC-ICP-MS, and which were used subsequently as a reference material during laser ablation measurement of Sr isotope ratios in bioapatite. We establish a protocol to estimate the 85Rb/87Rb mass bias from the analysis of shark teeth that demonstrates that the common assumption of equal Sr and Rb instrument induced fractionation can lead to a systematic bias in 87Sr/86Sr isotope ratios. Using the shark teeth as an "external" reference material to measure βRb yielded 87Sr/86Sr compositions in unknown samples that are within approximately -42 ppm to +66 ppm of expected values, instead of approximately -50 ppm to +190 ppm if assuming βRb = βSr. Finally, this methodology was tested on fossil gomphotherid (Rhynchotherium sp.) enamel, allowing us to make preliminary inferences about its palaeobiogeography.
期刊介绍:
Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.