Generalized Quasilinearization Method for Caputo Fractional Differential Equations with Initial Conditions with Applications

A. Vatsala, Govinda Pageni
{"title":"Generalized Quasilinearization Method for Caputo Fractional Differential Equations with Initial Conditions with Applications","authors":"A. Vatsala, Govinda Pageni","doi":"10.3390/foundations4030023","DOIUrl":null,"url":null,"abstract":"Computation of the solution of the nonlinear Caputo fractional differential equation is essential for using q, which is the order of the derivative, as a parameter. The value of q can be determined to enhance the mathematical model in question using the data. The numerical methods available in the literature provide only the local existence of the solution. However, the interval of existence is known and guaranteed by the natural upper and lower solutions of the nonlinear differential equations. In this work, we develop monotone iterates, together with lower and upper solutions that converge uniformly, monotonically, and quadratically to the unique solution of the Caputo nonlinear fractional differential equation over its entire interval of existence. The nonlinear function is assumed to be the sum of convex and concave functions. The method is referred to as the generalized quasilinearization method. We provide a Caputo fractional logistic equation as an example whose interval of existence is [0,∞).","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"28 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations4030023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computation of the solution of the nonlinear Caputo fractional differential equation is essential for using q, which is the order of the derivative, as a parameter. The value of q can be determined to enhance the mathematical model in question using the data. The numerical methods available in the literature provide only the local existence of the solution. However, the interval of existence is known and guaranteed by the natural upper and lower solutions of the nonlinear differential equations. In this work, we develop monotone iterates, together with lower and upper solutions that converge uniformly, monotonically, and quadratically to the unique solution of the Caputo nonlinear fractional differential equation over its entire interval of existence. The nonlinear function is assumed to be the sum of convex and concave functions. The method is referred to as the generalized quasilinearization method. We provide a Caputo fractional logistic equation as an example whose interval of existence is [0,∞).
带初始条件的卡普托分式微分方程的广义准线性化方法及其应用
计算非线性卡普托分数微分方程的解对于使用 q(即导数的阶数)作为参数至关重要。q 的值可以通过数据来确定,以增强相关数学模型。文献中的数值方法只能提供解的局部存在性。然而,非线性微分方程的自然上解和下解保证了存在的区间。在这项研究中,我们开发了单调迭代法,以及在整个存在区间内均匀、单调和二次收敛到卡普托非线性分数微分方程唯一解的下解和上解。假定非线性函数是凸函数和凹函数之和。该方法被称为广义准线性化方法。我们以 Caputo 分数对数方程为例,说明其存在区间为 [0,∞)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信