A. Tokar, Daniel Muntean, Danut Tokar, Daniel Bisorca
{"title":"Decarbonization of Heating and Cooling Systems of Buildings Located Nearby Surface Water Sources: Case Study","authors":"A. Tokar, Daniel Muntean, Danut Tokar, Daniel Bisorca","doi":"10.3390/en17153673","DOIUrl":null,"url":null,"abstract":"The study was carried out to evaluate theoretically and in laboratory conditions the capacity of a hybrid heating and cooling system that sustainably uses thermal energy extracted from surface waters in order to decarbonize buildings located near water sources. The novelty of the research consists in the realization of two experimental systems, one for the rapid evaluation of the performance of the water–water heat pump heating system and one for the evaluation of the operating behavior of a cooling system with fan coil units. Starting with the heating and cooling demand, and the climatic and hydrological local characteristics, a hybrid system model for the heating and cooling of the analyzed building was established and implemented. The forecasted energy consumption and CO2 emissions for the operation of the new equipment were compared with the historical values of the old systems with which the building was equipped (thermal energy supply from the district heating and cooling system with an air conditioning unit). Also, the results were extrapolated for forecasting the energy potential of the surface waters. The study highlights a percentage reduction in annual energy consumption of 67.71% and CO2 emissions of 80.13% through the implementation of the hybrid system.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153673","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The study was carried out to evaluate theoretically and in laboratory conditions the capacity of a hybrid heating and cooling system that sustainably uses thermal energy extracted from surface waters in order to decarbonize buildings located near water sources. The novelty of the research consists in the realization of two experimental systems, one for the rapid evaluation of the performance of the water–water heat pump heating system and one for the evaluation of the operating behavior of a cooling system with fan coil units. Starting with the heating and cooling demand, and the climatic and hydrological local characteristics, a hybrid system model for the heating and cooling of the analyzed building was established and implemented. The forecasted energy consumption and CO2 emissions for the operation of the new equipment were compared with the historical values of the old systems with which the building was equipped (thermal energy supply from the district heating and cooling system with an air conditioning unit). Also, the results were extrapolated for forecasting the energy potential of the surface waters. The study highlights a percentage reduction in annual energy consumption of 67.71% and CO2 emissions of 80.13% through the implementation of the hybrid system.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.