{"title":"Review on Aging Risk Assessment and Life Prediction Technology of Lithium Energy Storage Batteries","authors":"Zhiwei Liao, Dongze Lv, Qiyun Hu, Xiang Zhang","doi":"10.3390/en17153668","DOIUrl":null,"url":null,"abstract":"In response to the dual carbon policy, the proportion of clean energy power generation is increasing in the power system. Energy storage technology and related industries have also developed rapidly. However, the life-attenuation and safety problems faced by energy storage lithium batteries are becoming more and more serious. In order to clarify the aging evolution process of lithium batteries and solve the optimization problem of energy storage systems, we need to dig deeply into the mechanism of the accelerated aging rate inside and outside the lithium ion from the perspective of the safety and stability of a lithium battery in view of the complex and changeable actual working conditions during the operation of the battery. This paper takes a lithium-iron phosphate battery and a lithium-ion battery as examples to analyze. According to the specific scene of lithium battery operation, the actual operating conditions of lithium battery environmental impact factors and attenuation mechanisms are described in detail. The damage to the internal structure of lithium batteries was systematically analyzed. Furthermore, the correlation between the external influencing factors and the aging rate of lithium batteries under the coupling effect of internal failure mechanisms is analyzed. Finally, future energy storage failure analysis technology is anticipated, hoping to play a positive role in promoting the development of energy storage and lithium battery failure analysis technology.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"82 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153668","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the dual carbon policy, the proportion of clean energy power generation is increasing in the power system. Energy storage technology and related industries have also developed rapidly. However, the life-attenuation and safety problems faced by energy storage lithium batteries are becoming more and more serious. In order to clarify the aging evolution process of lithium batteries and solve the optimization problem of energy storage systems, we need to dig deeply into the mechanism of the accelerated aging rate inside and outside the lithium ion from the perspective of the safety and stability of a lithium battery in view of the complex and changeable actual working conditions during the operation of the battery. This paper takes a lithium-iron phosphate battery and a lithium-ion battery as examples to analyze. According to the specific scene of lithium battery operation, the actual operating conditions of lithium battery environmental impact factors and attenuation mechanisms are described in detail. The damage to the internal structure of lithium batteries was systematically analyzed. Furthermore, the correlation between the external influencing factors and the aging rate of lithium batteries under the coupling effect of internal failure mechanisms is analyzed. Finally, future energy storage failure analysis technology is anticipated, hoping to play a positive role in promoting the development of energy storage and lithium battery failure analysis technology.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico