Holistic Framework for the Implementation and Validation of PBF-LB/M with Risk Management for Individual Products through Predictive Process Stability

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hajo Groneberg, Sven Oberdiek, Carolin Schulz, Andreas Hofmann, Alexander Schloske, Frank Doepper
{"title":"Holistic Framework for the Implementation and Validation of PBF-LB/M with Risk Management for Individual Products through Predictive Process Stability","authors":"Hajo Groneberg, Sven Oberdiek, Carolin Schulz, Andreas Hofmann, Alexander Schloske, Frank Doepper","doi":"10.3390/jmmp8040158","DOIUrl":null,"url":null,"abstract":"The additive manufacturing technology powder bed fusion of metal with a laser beam (PBF-LB/M) is industrially established for tool-free production of complex and individualized components and products. While the in-processing is based on a layer-by-layer build-up of material, both upstream and downstream process steps (pre-processing and post-processing) are necessary for demand-oriented production. However, there are increasing concerns in the industry about the efficient and economical implementation and validation of the PBF-LB/M. Individual products for mass personalization pose a particular challenge, as they are subject to sophisticated risk management, especially in highly regulated sectors such as medical technology. Additive manufacturing using PBF-LB/M is a suitable technology but a complex one to master in this environment. A structured system for holistic decision-making concerning technical and economic feasibility, as well as quality and risk-oriented process management, is currently not available. In the context of this research, a framework is proposed that demonstrates the essential steps for the systematic implementation and validation of PBF-LB/M in two structured phases. The intention is to make process-related key performance indicators such as part accuracy, surface finish, mechanical properties, and production efficiency controllable and ensure reliable product manufacturing. The framework is then visualized and evaluated using a practice-oriented case study environment.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"98 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8040158","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The additive manufacturing technology powder bed fusion of metal with a laser beam (PBF-LB/M) is industrially established for tool-free production of complex and individualized components and products. While the in-processing is based on a layer-by-layer build-up of material, both upstream and downstream process steps (pre-processing and post-processing) are necessary for demand-oriented production. However, there are increasing concerns in the industry about the efficient and economical implementation and validation of the PBF-LB/M. Individual products for mass personalization pose a particular challenge, as they are subject to sophisticated risk management, especially in highly regulated sectors such as medical technology. Additive manufacturing using PBF-LB/M is a suitable technology but a complex one to master in this environment. A structured system for holistic decision-making concerning technical and economic feasibility, as well as quality and risk-oriented process management, is currently not available. In the context of this research, a framework is proposed that demonstrates the essential steps for the systematic implementation and validation of PBF-LB/M in two structured phases. The intention is to make process-related key performance indicators such as part accuracy, surface finish, mechanical properties, and production efficiency controllable and ensure reliable product manufacturing. The framework is then visualized and evaluated using a practice-oriented case study environment.
实施和验证 PBF-LB/M 的整体框架,通过预测工艺稳定性对单个产品进行风险管理
利用激光束进行金属粉末床熔化(PBF-LB/M)的快速成型技术已在工业上得到确立,可用于免工具生产复杂的个性化部件和产品。虽然加工过程是基于材料的逐层堆积,但上游和下游加工步骤(前处理和后处理)对于以需求为导向的生产都是必要的。然而,业界对 PBF-LB/M 如何高效、经济地实施和验证越来越关注。用于大规模个性化定制的单个产品尤其具有挑战性,因为这些产品需要进行复杂的风险管理,特别是在医疗技术等高度受监管的行业。使用 PBF-LB/M 的增材制造技术是一项合适的技术,但在这种环境下要掌握这项技术却很复杂。目前还没有一个结构化的系统,可用于技术和经济可行性的整体决策,以及以质量和风险为导向的流程管理。在这项研究中,提出了一个框架,展示了分两个结构化阶段系统实施和验证 PBF-LB/M 的基本步骤。其目的是使与过程相关的关键性能指标(如零件精度、表面光洁度、机械性能和生产效率)可控,并确保可靠的产品制造。然后,利用面向实践的案例研究环境对该框架进行可视化和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信