Detection of Inconsistencies in Isotope Ratios Certified in the Isotopic Primary Standards for Copper, Zinc and Nickel

IF 2.7 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
J. Meija, Juan He, Brad Methven, Zoltán Mester, Lu Yang
{"title":"Detection of Inconsistencies in Isotope Ratios Certified in the Isotopic Primary Standards for Copper, Zinc and Nickel","authors":"J. Meija, Juan He, Brad Methven, Zoltán Mester, Lu Yang","doi":"10.1111/ggr.12578","DOIUrl":null,"url":null,"abstract":"Calibrated isotope ratio measurements underpin numerous areas of scientific enquiry. Isotope measurement results rely on reference materials in order to correct instrumental isotopic fractionation, a bias induced by all mass spectrometers. The reference values assigned to these materials are typically obtained using gravimetric mixtures of separated isotopes but such experiments are costly and thus rarely cross‐examined. Here we advance the concept of linking measurements of various isotope systems to provide a cost‐effective way to assess the reliability of the values assigned to isotopic primary standards. Using MC‐ICP‐MS, we apply this workflow to examine the consistency of a couple of long‐standing isotopic primary standards of copper, nickel and zinc. Our measurement results of the reference materials that define the isotope ratios and consequently the atomic weights of zinc and nickel, Ar(Zn, IRMM‐3702) = 65.3604 ± 0.0023 (95% confidence interval) and Ar(Ni, NIST SRM 986) = 58.6979 ± 0.0010 (95% confidence interval), show zinc to be 15‐sigma lighter and nickel 16‐sigma heavier than their certified values. These discrepancies are suggestive of a wider reproducibility crisis surrounding isotopic standards and a further cross‐examination of isotope ratios associated with primary reference materials is likely to identify yet‐unrecognised biases for many other elements of the Periodic Table leading to improvements of the overall reliability of research conclusions that relies on them.","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/ggr.12578","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Calibrated isotope ratio measurements underpin numerous areas of scientific enquiry. Isotope measurement results rely on reference materials in order to correct instrumental isotopic fractionation, a bias induced by all mass spectrometers. The reference values assigned to these materials are typically obtained using gravimetric mixtures of separated isotopes but such experiments are costly and thus rarely cross‐examined. Here we advance the concept of linking measurements of various isotope systems to provide a cost‐effective way to assess the reliability of the values assigned to isotopic primary standards. Using MC‐ICP‐MS, we apply this workflow to examine the consistency of a couple of long‐standing isotopic primary standards of copper, nickel and zinc. Our measurement results of the reference materials that define the isotope ratios and consequently the atomic weights of zinc and nickel, Ar(Zn, IRMM‐3702) = 65.3604 ± 0.0023 (95% confidence interval) and Ar(Ni, NIST SRM 986) = 58.6979 ± 0.0010 (95% confidence interval), show zinc to be 15‐sigma lighter and nickel 16‐sigma heavier than their certified values. These discrepancies are suggestive of a wider reproducibility crisis surrounding isotopic standards and a further cross‐examination of isotope ratios associated with primary reference materials is likely to identify yet‐unrecognised biases for many other elements of the Periodic Table leading to improvements of the overall reliability of research conclusions that relies on them.
检测铜、锌和镍同位素初级标准中认证的同位素比率的不一致性
校准同位素比值测量是众多科学研究领域的基础。同位素测量结果依赖于参考材料,以校正仪器同位素分馏,这是所有质谱仪都会产生的偏差。分配给这些材料的参考值通常是使用分离同位素的重量测量混合物获得的,但此类实验成本高昂,因此很少进行交叉检验。在这里,我们提出了将各种同位素系统的测量结果联系起来的概念,从而提供了一种评估同位素主要标准值可靠性的经济有效的方法。我们利用 MC-ICP-MS 将这一工作流程应用于检查铜、镍和锌等几种长期存在的同位素主要标准物质的一致性。Ar(Zn, IRMM-3702) = 65.3604 ± 0.0023(置信区间 95%)和 Ar(Ni, NIST SRM 986) = 58.6979 ± 0.0010(置信区间 95%)是确定锌和镍同位素比并由此确定原子量的标准物质,我们对它们的测量结果表明,锌比它们的认证值轻 15 个西格玛,镍比它们的认证值重 16 个西格玛。这些差异表明围绕同位素标准存在更广泛的可重复性危机,进一步交叉检验与主要参考材料相关的同位素比值很可能会发现元素周期表中许多其他元素尚未认识到的偏差,从而提高依赖这些元素得出的研究结论的整体可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geostandards and Geoanalytical Research
Geostandards and Geoanalytical Research 地学-地球科学综合
CiteScore
7.10
自引率
18.40%
发文量
54
审稿时长
>12 weeks
期刊介绍: Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信